
Combining Multi-Objective Search and
Constraint Solving for Configuring Large

Software Product Lines
Christopher Henard∗, Mike Papadakis∗, Mark Harman†, and Yves Le Traon∗

∗Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
†University College London, Gower Street, London

christopher.henard@uni.lu, michail.papadakis@uni.lu, mark.harman@ucl.ac.uk and yves.letraon@uni.lu

Abstract—Software Product Line (SPL) feature selection in-
volves the optimization of multiple objectives in a large and highly
constrained search space. We introduce SATIBEA, that augments
multi-objective search-based optimization with constraint solving
to address this problem, evaluating it on five large real-world
SPLs, ranging from 1,244 to 6,888 features with respect to three
different solution quality indicators and two diversity metrics.
The results indicate that SATIBEA statistically significantly
outperforms the current state-of-the-art (p < 0.01) for all five
SPLs on all three quality indicators and with maximal effect
size (Â12 = 1.0). We also present results that demonstrate
the importance of combining constraint solving with search-
based optimization and the significant improvement SATIBEA
produces over pure constraint solving. Finally, we demonstrate
the scalability of SATIBEA: within less than half an hour, it finds
thousands of constraint-satisfying optimized software products,
even for the largest SPL considered in the literature to date.

I. INTRODUCTION

A Software Product Line (SPL) [1], [2], is a collection of
related software products, all of which share some core func-
tionality, yet each of which differs in some specific features.
Software engineers use SPLs to increase software reusability
and to rationalise software maintenance and evolution effort
across a range of related products [3].

However, without automated support, this feature selection
process is likely to be highly suboptimal: it requires the si-
multaneous satisfaction of multiple objectives, such as match-
ing user preferences, minimizing product cost and satisfying
technical feasibility constraints in feature spaces defined by
many thousands of features. In such large, constrained spaces,
human intuition is insufficient to find optimal or near optimal
software products. In order to reduce configuration effort and
optimize the resulting product choices, automated techniques
for feature selection have been introduced. A recent survey of
SPL product optimization can be found elsewhere [4].

The problem of feature selection was first addressed in 2008
by White et al. [5] who introduced an approach called Filtered
Cartesian Flattening to select features from a feature model,
but this was only able to cater for single optimization objec-
tives. In 2011 Guo et al. [6], [7] introduced a genetic algorithm
for the same problem, demonstrating that it outperformed
Filtered Cartesian Flattening on synthetically generated SPLs,
but did not present results for any real-world SPLs.

These previous approaches were all single objective ap-
proaches. Therefore they could not construct software products
from SPLs for which multiple (perhaps conflicting and com-
peting) objectives needed to be optimized. Sadly, such single
objective solutions are unsuited to most real-world SPL feature
selection problems (which are multi-objective). However, in
2011, Wu et al. [8] introduced a multi-objective optimization
formulation that was evaluated on a Mail Server System case
study.

In 2013 Sayyad et al. provided a detailed investigation of the
multi-objective SPL feature selection problem in four related
papers [9], [10], [11], [12] that collectively established the
current state-of-the-art. Their first paper [11] demonstrated
that search-based optimization can be used to find products
that optimize multiple objectives. They evaluated on real-world
SPLs, replicating their results [9], and reporting on parameter
tuning effects [10]. Finally, Sayyad et al. introduced additional
heuristics to improve the scalability of their approach [12],
which is an important consideration for SPL optimization,
since SPLs can be very large.

None of these previous approaches to SPL feature selection
have included any explicit technique to handle constraints,
leaving open the question of how best to optimize SPL
feature selection in the presence of constraints. This is an
important open question because most real-world SPLs are
highly constrained [13], and solutions that fail to respect such
constraints are likely to be rejected by both developers and
their users.

Indeed, many constraint-violating solutions will prove to
be simply unbuildable; constraints often determine whether
or not a product can be feasibly constructed. Furthermore,
this paper shows that concentrating on constraint-respecting
solutions also allows the search to find software products that
significantly outperform the state-of-the-art.

We introduce SATIBEA, a search-based SPL feature selec-
tion algorithm, augmented by constraint solving and two smart
search operators. SATIBEA guides the automated search to
constraint-respecting solutions that maximise multiple objec-
tives in reasonable time. Our empirical study, which include
the largest yet reported SPL, demonstrates that SATIBEA is
a scalable and significant improvement over the current state-
of-the-art.

The primary contributions of the paper can be summarised
as follows:

1) We introduce SATIBEA, a new algorithm for SPL se-
lection and evaluate it on 5 real-world SPLs, ranging
from 1,244 to 6,888 features with respect to 3 quality
indicators and two diversity measures. We perform 30
independent executions to support inferential statistical
testing for significance and assessment of effect size.

2) We show that SATIBEA significantly outperforms the
current state-of-the-art (with maximal effect size) accord-
ing to all 3 solution quality indicators and for all 5 SPLs.

3) We demonstrate the importance of augmenting search
with constraint solving in such constrained spaces as
SPLs: We present results that show that our simple
constraint solving approach alone can also significantly
outperform the state-of-the-art with maximal effect size
with respect to all 3 solution quality indicators in 3 SPLs
including the largest one, Linux.

4) We demonstrate the added value of our combined ap-
proach with smart operators over constraint solving alone.
Over the 15 comparisons (5 SPLs, each with 3 quality in-
dicators) we find that SATIBEA significantly outperforms
constraint solving alone in 13, and with maximal effect
size in 11.

5) We demonstrate SATIBEA’s scalability. Scalability is a
known and important issue for both SPLs [12], [13], [14]
and search-based software engineering [15].

The remainder of the paper is organized as follows: Sec-
tions II and III introduce and motivate the concepts and the
propositions underlying the present paper. Section IV details
the proposed approaches. The studied research questions and
the experimental setup are detailed in Sections V and VI.
Experimental results are presented and discussed in Sections
VII and VIII. Finally, Section IX examines work related to the
present one and Section X concludes the paper.

II. BACKGROUND

This section introduces background concepts on SPLs and
multi-objective optimization that are used in the paper.

A. Software Product Line Engineering

Software engineers build many variations of their systems
in order to match the specific needs of particular clients
[16]. Software Product Line Engineering (SPLE) is a software
development paradigm designed to handle this situation. It
involves the creation and the management of an SPL which
encompasses the different variants, called products. SPLE
appeared in 1990 with the development of Feature-Oriented
Domain Analysis [17]. The benefits of SPLE include the
reduction of the maintenance effort, lower development costs
and a faster time to market [3]. The variabilities and com-
monalities among software products are expressed in terms of
features [18]. Each feature is an abstraction of a functionality
or property of the software products.

1) Feature Model: Feature Models (FMs) are the standard
and compact representation of the possible products of an
SPL [19], [20]. An FM defines the valid feature combinations
[18] by expressing constraints between them. As an example,
consider the FM depicted in Figure 1. It contains 9 features.
Some features are mandatory (included in every product), e.g.,
the “draw” feature. Other features are constrained to co-occur.
For instance, the “color” feature requires the “color palette”.

An FM can be translated to a Boolean formula in Conjunc-
tive Normal Form (CNF). Such formulas are a conjunction
of n clauses c1, ..., cn, where a clause is a disjunction of m
literals. A clause is a constraint between some features of the
FM and a literal is a feature that is selected (fj) or not (fj):
FM =

∧n
i=1(

∨
j∈[1;m] lj), where lj = fj or fj . For instance,

the FM of Figure 1 contains m = 9 features and encompasses
n = 18 constraints represented as follows in CNF:
f1, (f2∨f1), (f1∨f2), (f3∨f1), (f1∨f3), (f4∨f1), (f5∨f1), (f1∨
f5), (f6∨f3), (f7∨f3), (f3∨f6∨f7), (f8∨f5), (f9∨f5), (f5∨f8∨
f9), (f8 ∨ f9), (f7 ∨ f4), (f4 ∨ f8), (f9 ∨ f4). The corresponding
CNF formula is a conjunction of all the constraints: FM =

f1 ∧ (f2 ∨ f1)∧ (f1 ∨ f2)∧ (f3 ∨ f1)∧ (f1 ∨ f3)∧ (f4 ∨ f1)∧ (f5 ∨
f1)∧ (f1 ∨ f5)∧ (f6 ∨ f3)∧ (f7 ∨ f3)∧ (f3 ∨ f6 ∨ f7)∧ (f8 ∨ f5)∧
(f9∨f5)∧(f5∨f8∨f9)∧(f8∨f9)∧(f7∨f4)∧(f4∨f8)∧(f9∨f4).

2) Product Configuration: A product configuration C cor-
responds to the features that are present or not in a given prod-
uct: C = {l1, ..., lm} where lj = fj or fj . For instance, with
respect to Figure 1, C1 = {f1, f2, f3, f4, f5, f6, f7, f8, f9} is a
configuration representing the software product proposing all
the features except rectangular selection and black and white
rendering. This configuration is valid, since it satisfies the
constraints of the FM described in the previous subsection.
By contrast, C2 = {f1, f2, f3, f4, f5, f6, f7, f8, f9} violates
the constraint (f1 ∨ f2) and is thus invalid.

B. Multi-objective Optimization

Multi-Objective Optimization (MOO) refers to the process
of optimizing more than one objective at the same time. The
aim of these approaches is to search for optimal (or nearly
optimal) solutions requiring trade-offs between two or more
conflicting objectives. Let X be the set of all the possible prod-
uct configurations of an SPL and let v = [F1(x), ..., Fk(x)]

T

be a vector of k objective functions. If each objective has to be

RasterGraphicsEditor

Draw ColorPaletteSelection Rendering

BlackWhite ColorRectangular ByColor

Mandatory

Optional

Or

Exclusive Or

Requires

Excludes

Fig. 1: A feature model of a raster graphics editor. It represents
the 9 features of the software product line and their constraints.

minimized, MOO aims at finding x1, ..., xk, i.e., the solutions
to the problem, such as v is minimized. The minimization of
v is the process of optimizing simultaneously the k objective
functions [21].

Let x1 and x2 be two potential solutions to the problem. We
say that x1 dominates x2, written as x1 � x2 if and only if
∀i ∈ {1, ..., k}Fi(x1) ≤ Fi(x2) and ∃i ∈ {1, ..., k}Fi(x1) <
Fi(x2). Given x1, ..., xn potential solutions to the MOO
problem, the Pareto front corresponds to the subset of these
potential solutions that are non-dominated by the others. An
example of Pareto front is illustrated by Figure 2 for two
objectives F1 and F2 to minimize. In this example, x1, x2,
x4, x6 and x7 are in the Pareto front set since they are not
dominated by any other solution. By contrast, x10 is dominated
(among others) by x2 (x2 � x10). So, it does not lie on the
front. Finally, we denote as Pareto front size the number of
solutions in the Pareto front.

C. State-of-the-art, the IBEA method

The Indicator-Based Evolutionary Algorithm (IBEA) [22]
is an evolutionary MOO technique using quality indicators
to guide the search towards the optimal solutions. IBEA
has the ability to exploit user preferences. The advantages
of this algorithm over other search techniques for the SPL
configuration problem have been shown in [11], [12].

Sayyad et al. [11] proposed setting the number of con-
straints that are violated as a minimization objective within the
search process in order to deal with the SPL constraints. The
user preferences are also modeled as additional optimization
objectives. The approach applies the standard mutation, i.e.,
flipping bits of the offspring with a specific probability, and
crossover operators. Their results provide evidence that this
practice can lead to invalid and marginally invalid configura-
tions. They also suggest that IBEA is capable of providing a
wide range of valid configurations that exploit and optimize
user preferences.

The results of Sayyad et al. were reinforced by the study of
Olaechea et al. [23], [24] who demonstrated, on small models,
that IBEA is capable of finding the optimal solutions. Olaechea
et al. also showed that is feasible to compute exact solutions
when considering models with fewer than 45 features. This
bound indicates the need for approximation algorithms, such
as IBEA, for the cases of larger models.

Empirical evidence has been provided to show that by
enhancing the initial population of the algorithm with one

Solutions

Pareto front

Fig. 2: An example of Pareto front with two objectives F1 and
F2 to minimize. The solutions x1, x2, x4, x6 and x7 are in
the Pareto front since they are not dominated by any other.

valid configuration, called seed, IBEA is capable of scaling
on very large FMs has also been provided [12]. According
to the studies of Sayyad et al., one seed that is rich, i.e.,
one configuration with many features selected, is adequate
for improving the search process and more effective than
using many seeds. We only consider large SPLs and thus, we
compare with this approach which forms the current state-of-
the-art. In the rest of the paper we refer to it as the state-of-
the-art or as the IBEA approach.

III. MOTIVATION

Automatic configuration of SPLs is a challenging problem.
The problem is very hard for large models where most of the
existing approaches fail. One such approach is the random one.
To demonstrate the difficulty of the problem, we implement a
baseline approach that randomly selects and deselects features
of the model. By applying the baseline for 30 minutes we
expect to generate a large set of configurations some of which,
we might suppose, would turn out to be valid according to
the constraints. However, after the application on our studied
models (refer to Section VI-A for further details), we found no
valid configuration out of the 57,303,105 solutions produced
for the 5 subjects in total.

This simple fact shows that the problem is hard and cannot
be tackled with ad-hoc solutions. Additionally, the results of
Sayyad et al. [12] show that both the IBEA and NSGA-II
approaches fail to provide any valid solution after 30 minutes
of execution when their population is not seeded. Similarly,
the study of Olaechea et al. [23], [24] demonstrates that
it is infeasible to compute exact solutions for models with
more than 45 features. Collectively, these results highlight the
challenges posed by constrained industrial scale SPLs.

IV. THE PROPOSED APPROACHES

One of the most challenging SPL optimization tasks is
the automatic generation of valid configurations. The current
state-of-the-art uses IBEA to search and find valid solutions.
An alternative to search would involve the use of a SAT
solver [14]. In this case, a valid configuration is a satisfiable
model found by the solver. To this end, one might attempt to
enumerate all the valid solutions of a model and select those
that are optimal with respect to the other objectives. However,
the large number of valid configurations makes this simplistic
approach infeasible [24]. As a result, some form of search-
based technique is needed.

To effectively perform search, we seek to combine the
benefits of both constraint solving and searching in a com-
plimentary way. The question this raises is how best to
perform such a combination. To achieve this, two key aspects
are considered: diversity promotion and search using smart
operators. These aspects are taken into account in our approach
called SATIBEA. We also define a “filtered” technique which
only bestows the diversity promotion. Doing so allows to
empirically assess its contribution to SATIBEA success in
isolation.

A. Diversity Promotion

We wish to promote maximal diversity of SAT solutions
in a cheap way. We do this by randomly permuting the
parameters that control the search for constraint-satisfying
solutions processed by the SAT solver. More specifically, there
are three different SAT parameters that we permute:

1) Constraint order. This is the order in which the con-
straints are considered.

2) Literal order. This is the order in which the literals of
each constraint are ordered.

3) Phase selection. This is the order {true, false} in which
assignments to variables are instantiated.

By randomly permuting these three parameters at each
iteration of the SAT execution, we increase the diversity of
solutions found. To empirically assess the degree of Diversity
Promotion (DP) this creates, we use a dissimilarity metric,
as it is defined in [14]. Based on the Jaccard distance, this
metric captures degrees of difference between the selected and
unselected features of two configurations. The metric takes
values between 0 and 1. A value of 1 signifies that the two
configurations differ completely, while, 0 signifies that the two
considered configuration are the same.

Table I records the results of the above-mentioned dissimi-
larity metric for solutions produced, on a set of subject models,
with and without DP. These subjects are introduced in Section
VI-A. Specifically, Table I records a) the average dissimilarity
between two configurations that are consecutively generated
by calling the solver 1,000 times, b) the set dissimilarity, i.e.,
the dissimilarity between any two configurations from a set
of 1,000 configurations produced by the solver and c) the
percentage increase in the diversity of the configurations as
measured by the a) and b) cases. The dissimilarity between two
consecutive configurations Ci, Cj is measured by d(Ci, Cj) =
|Ci∪Cj |−|Ci∩Cj |

|Ci∪Cj | . The dissimilarity of a set of n configura-
tions is measured by D(C1, ..., Cn) = 1

(n2)

∑n
j>i d(Ci, Cj).

Finally, the increase in the diversity is calculated as follows:
increase = (with DP−without DP)

without DP ×100. As it can be seen in Table
I, the permutation of the SAT parameters allows the diversity
of the solutions to increase by 2,768% in the worst case for the
consecutive calls to the solver. For the set of configurations,
the diversity increase was 161% in the worst case and more
than 39,000% in the best case.

B. “Smart” Operators

We introduce two operators that are “smart” in the sense
that they are constraint-aware and using diversity promotion.

1) Smart Mutation: This mutation operates by finding the
features that are not involved in the violations of constraints.
It keeps their values and asks the solver to find a solution for
the rest by assuming the values of the rest of the features.
Consider an FM with 5 features and 3 constraints: FM =
(f1 ∨ f5) ∧ (f2 ∨ f3) ∧ (f2 ∨ f5). The configuration C =
{f1, f2, f3, f4, f5} is invalid because the two constraints (f1∨
f5) and (f2 ∨ f5), which involve the features f1, f2 and f5,
are violated. We remove the assignment of these features and

TABLE I: Dissimilarity with and without Diversity Promotion
(DP) on 1,000 configurations per model.

Consecutive configurations Set of configurations
without DP with DP increase without DP with DP increase

Linux 0.0004 0.5934 148,250% 0.0015 0.5937 39,487%

uClinux 0.0036 0.2807 7,697% 0.1080 0.2814 161%

Fiasco 0.0066 0.1892 2,768% 0.0436 0.1869 329%

FreeBSD 0.0022 0.5891 26,677% 0.0074 0.5897 7,991%

eCos 0.0046 0.5429 11,702% 0.0304 0.5426 1,685%

make C partially valid, i.e., C : Cpartial = { , , f3, f4, }. This
partial configuration is given to the SAT solver, which will
complete it, to return a valid configuration. For instance, it can
return the following configuration C ′ = {f1, f2, f3, f4, f5}. As
a result, C has been mutated into C ′.

2) Smart Replacement: This operator randomly picks a
configuration from the solutions and replaces it with a new
valid one, improving the quality and diversity of the solutions.

C. The SATIBEA approach

SATIBEA augments IBEA [22] with the smart opera-
tors. Diversity promotion is used in the optimization process
through these two operators. SATIBEA also employs a form
of memory by keeping track of all the valid configurations
produced by the algorithm. Based on these solutions, we
compute the Pareto front. Thus, the population is evolved via
the four following operators:

1) Mutation. This is the standard bit-flip operator of IBEA.
It iterates over the bits, i.e., the feature options, of the
offspring, i.e., the configuration, and flips them with a
specific probability.

2) Crossover. This is the “standard” single-point crossover
operator of IBEA. It combines two solutions, i.e., config-
urations, by replacing the bits of the first one, from the
beginning of the offspring up to the crossover point, with
those of the second one.

3) Smart Mutation, as described in Section IV-B1.
4) Smart Replacement, as introduced in Section IV-B2.

D. The Filtered approach

To investigate the contribution of the diversity promotion to
SATIBEA’s performance, we also define a simple algorithm
that simply randomly samples over diversity promoted SAT
solutions. We refer to this approach as the Filtered one.

V. RESEARCH QUESTIONS

We first empirically evaluate SATIBEA against the current
state-of-the-art [11], [12]. This is a natural first research
question, since there is no point in evaluating further if our new
algorithm cannot convincingly outperform the state-of-the-art.
RQ1. How does the SATIBEA compare with the current state-

of-the-art?
Since the results of RQ1 indicate that SATIBEA does,

indeed, convincingly outperform the state-of-the-art, we turn
to the question of examining why. Naturally, since one of our

primary novelties lies in the incorporation of SAT solving
into the search for constraint-respecting solutions, we next
investigate and report on the effectiveness of SAT solving
alone. How well would SAT solving perform against the
current state-of-the-art on its own? This motivates RQ2:
RQ2. How well does the state-of-the-art perform against con-

straint solving alone (randomly selected solutions filtered
by SAT, i.e., the Filtered approach)?

Perhaps surprisingly, we found that the Filtered approach
outperforms the state-of-the-art. This provides compelling
evidence that constraint solving does have an important role
to play in the search for optimized products, automatically
configured from SPLs. However, it also raises a further
question: does SATIBEA significantly outperform constraint
solving alone? If the answer is ‘no’, then all the value in
our new SATIBEA approach derives from our incorporation
of constraint solving, with search-based optimization and our
smart mutation operators offering little added value. In order
to check that this is not the case, we investigate RQ3 below:
RQ3. How well does SATIBEA perform against constraint

solving alone (randomly selected solutions filtered by
SAT, i.e., the Filtered approach)?

At this point in our study we will have considered whether
our new algorithm SATIBEA outperforms the state-of-the-art
(RQ1), whether constraint solving plays an important role in
its performance (RQ2) and whether SATIBEA adds value to
the search for constraint-respecting optimized software prod-
ucts over-and-above pure constraint solving alone (RQ3). Our
final question concerns the execution time required to achieve
these results. Even if SATIBEA convincingly outperforms all
alternatives, this will be of little consequence if it does not
scale well to the challenges of very large SPLs involving
billions of possible configurations over thousands of features.
We therefore conclude our study by reporting on the time taken
to complete the execution of SATIBEA on the largest SPL for
which results have been reported in the literature to date.
RQ4. What is the execution time required to find constraint-

respecting optimized software products from the largest
SPL hitherto considered in the literature?

VI. EXPERIMENTAL SETUP

This section presents the settings of the conducted experi-
ments. Specifically, it describes the subjects, the optimization
objectives and the employed metrics.

A. Subjects

The study uses 5 FMs taken from the Linux Variability
Analysis Tools (LVAT) repository1. The characteristics of the
FMs are described in Table II. For each of them, it presents
the version used, and the number of features and constraints it
contains. Following the evaluation approach used by Sayyad
et al. [11], [12], each feature of each FM has been augmented
with 3 attributes: cost, used before and defects. The values
for these attributes have been set arbitrarily with a uniform

1http://code.google.com/p/linux-variability-analysis-tools

TABLE II: Feature models used in the empirical study.

Feature model Version Features (mandatory) Constraints
Linux [25] 2.6.28.6 6,888 (58) 343,944

uClinux [26] 20100825 1,850 (7) 2,468

Fiasco [26] 2011081207 1,638 (49) 5,228

FreeBSD [25] 8.0.0 1,396 (3) 62,183

eCos [25], [27] 3.0 1,244 (0) 3,146

distribution: cost takes real values between 5.0 and 15.0, used
before takes Boolean values and defects takes integer values
between 0 and 10. The following dependency among these
attributes is used: if (not used before) then defects = 0.

B. Optimization Objectives

In this study, we are measuring the following 5 objectives:
1) Correctness. We seek to minimize the constraints of the

FM that are violated by a configuration.
2) Richness of features. We seek to minimize the number of

deselected features in a configuration.
3) Features that were used before. We seek to minimize

the features that were not used before, i.e., minimize the
number of “false” for this attribute.

4) Known defects. We seek to minimize the number of
known defects in a configuration.

5) Cost. We seek to minimize the cost of a configuration.
In practice, based on the needs and the historical data of

engineers, other objectives can be also used. We selected these
five objectives to ensure identical settings as those reported for
the state-of-the-art [12].

C. Settings

All the experiments were performed on a Quad Core@2.40
GHz with 24GB of RAM. To enable a fair comparison with
the state-of-the-art, we used exactly the same settings as the
ones of Sayyad et al. [12]. These settings are: population size
300, archive size 300, crossover rate 0.05 and 0.001 mutation
probability. The mutation probability refers to the probability
that an optional feature of the model will be flipped. Regarding
the configurations, we systematically set mandatory features
(features that have to be present in any configuration) as
selected and dead ones (features that cannot be part of any
configuration) as unselected in the initial population of IBEA.
We also prevented IBEA from flipping these features during
the mutation process. Flipping these features always leads
to invalid configurations. Thus, this practice helps IBEA to
find valid configurations. The same evaluations settings were
undertaken in the study of Sayyad et al. [12].

We carefully followed all the recommendations of Sayyad
et al. in our experiments. Unfortunately, it is impossible to
produce the same seeds. Since the work of Sayyad et al. [12]
is not currently accompanied by any data or implementation,
we simply followed the guidelines they give in their paper.
Therefore, we have produced seeds using the solver by maxi-
mizing the number of selected features. This is done by setting
the SAT parameter “phase selection” to assign true to the

http://code.google.com/p/linux-variability-analysis-tools

TABLE III: Selected features in the seeds used by IBEA.

Feature Model Selected features Selected features in [12]
Linux 6,265 5,704

uClinux 613 455

Fiasco 338 575

FreeBSD 1,088 946

eCos 1,148 967

variables. Note that this parameter was also used for diversity
promotion (see Section IV-A). We thus produce one “rich”
seed per model, as suggested by Sayyad et al. [12]. Table III
describes the number of features selected in each seed.

Similarly, the settings for SATIBEA are the same as for
IBEA, i.e., population size 300, archive size 300, crossover
rate 0.05. The probability to use the standard mutation of
IBEA (bitflip), which mutates a chromosome is set to 0.98.
The probability to flip a feature is set to 0.001 per feature.
The probabilities of mutating using the smart mutation and
the smart replacement is 0.01 for both cases. We employed the
Sat4j SAT solver [28] and used the jMetal framework [29] for
the implementation of IBEA and for the quality and diversity
metrics (see Section VI-D). We independently applied each
approach 30 times per FM with 30 minutes of execution time
for each algorithm. Invalid configurations were discarded for
all the studied techniques. Recall that invalid configurations
are useless in practice.

D. Metrics

To evaluate the studied approaches, we follow two direc-
tions: 1) we measure the proximity of the solutions found
from the optimal ones, i.e., their quality, and 2) we evaluate
the diversity of the solutions. Note that diversity is only useful
when there is quality: a single diamond is preferable to an
arbitrary number of diverse glass fragments. In other words,
it is useless to have diverse solutions that are all dominated
by a single one. Therefore, the diversity metrics should be
considered only when comparing solutions of similar quality.

Since the global optimum cannot be known in all
cases (as with all NP-hard problems), a reference front
is used in evaluation. It consists of the best solutions
found by all the studied approaches and it is defined as
follows: Given n Pareto fronts A1, ..., An, and if 1 ≤
j ≤ m ≤ n, the reference front Aref is defined as:
Aref = {x1, ..., xm | (∀xj ∈ Aref)(6 ∃x′ ∈

⋃n
i=1Ai)(x

′ � xj)}.
It should be noted that Aref ⊆ Ai ∪ ... ∪An.

1) Quality Metrics: These metrics ensure that we find high
quality solutions. Following the evaluation approach suggested
by Knowles et al. [30], we use three metrics to evaluate the
quality of the configurations of the Pareto front: Hypervolume,
Epsilon and Inverted Generational Distance.

a) Hypervolume (HV): This metric represents the volume
of the objective space that is dominated by the Pareto front A.
It evaluates how well a Pareto front fulfills the optimization
objectives. It is written HV and defined in [31] as follows:
HV(A) = λ

(⋃
x∈A[F1(x), r1]× · · · × [Fk(x), rk]

)
, where

λ(S) is the Lebesgue measure [32] of a set S, k is the
number of objectives, r = [r1, ..., rk] is the reference point and
[F1(x), r1]×···×[Fk(x), rk] is the k-dimensional hypercuboid
consisting of all the points dominated by the point x. The
reference point is the maximum value that belongs to the
reference front. A higher HV denotes a better Pareto front.

b) Epsilon (ε): This metric measures the shortest dis-
tance that is required to transform every solution in a
Pareto front A to dominate the reference front [30]. If
x = [x1, ..., xk]T ∈ R+

k is a solution, it is defined as [33]:
ε(A,Aref) = inf

x∈R
{∀x′ ∈ Aref ∃x ∈ A |x �ε x′}, where

x �ε x′ if and only if ∀1 ≤ i ≤ k : xi ≤ ε · x′i. This
indicator denotes how close A is to the reference front and
thus, lower values are preferable.

c) Inverted Generational Distance (IGD): This metric
is the average distance from the solutions belonging to the
reference front to the closest solution in a Pareto front A [34].
IGD is defined as follows: IGD(A,Aref) =

∑
x′∈Aref

d(x′,A)

PFS(Aref)
,

where d(x′, A) is the minimum Euclidean distance between
x′ and the other points in A and PFS is the Pareto Front Size
(see Section VI-D2a). For ε, the lower the value of IGD, the
closer A is to the reference Pareto front.

2) Diversity Metrics: These metrics ensure that the decision
maker has a variety of solutions to choose. We use two
diversity metrics: the Pareto front size and the Spread of the
solutions in the explored space.

a) Pareto Front Size (PFS): This metric is the number of
solutions in a Pareto front A. It is calculated as the cardinality
of the Pareto front set, i.e., PFS(A) = |A|. A higher Pareto
front size is preferred since more options are given to the user.
However, this is only important when high quality is preserved.

b) Spread (S): The spread measure defines the extent of
spread in the solutions of the Pareto front A. It is defined in
[35] as follows: S(A) =

df+dl+
∑PFS(A)−1

i=1 |di−d|
df+dl+(PFS(A)−1)d , where di is

the Euclidean distance between consecutive solutions of A, d
is the average of the di’s and df and dl are the Euclidean
distance between the extreme solutions and the boundary
solutions of A. A higher spread denotes a better Pareto front
since it reflects more diverse solutions, i.e., distributed among
all the optimization objectives.

E. Statistical Analysis and Tests

To check the statistical significance of the differences be-
tween the algorithms, we performed a statistical test using
the MannWhitney U test (two-tailed) at a 5% significance
level. It is a non-parametric test and thus, it makes fewer
assumptions regarding the underlying populations. Based on
this test, we obtain an estimation about the probability, i.e., p-
value, that one algorithm gives different values than the other.
Furthermore, to reduce the threats of having type I errors in
the cases of multiple comparisons, i.e., incorrect rejection of a
true null hypothesis, we also consider the standard Bonferroni
adjustment [36]. This is a conservative but safe adjustment
because it reduces the chances of type I errors. Following
the advice of Arcuri and Briand and Wohlin et al. [36],

TABLE IV: State-of-the-art VS the proposed approaches: comparison in terms of quality metrics, i.e., hypervolume (HV),
epsilon (ε) and inverted generational distance (IGD), and diversity metrics, i.e., Pareto front size (PFS), spread (S) on 30
independent runs per approach. Higher values are preferred for HV, PFS and S. Lower values are preferred for ε and IGD.

IBEA (I) Filtered (F) SATIBEA (SI) SI VS I F VS I SI VS F
median avg median avg median avg p-value Â12 p-value Â12 p-value Â12

L
in

ux

Q
ua

lit
y HV 7.75E-7 1.00E-6 0.1133 0.119 0.1624 0.1627 3.02E-11 1 3.02E-11 1 4.62E-10 0.97

ε 0.9084 0.9082 0.1623 0.1616 0.0733 0.0721 2.96E-11 1 2.97E-11 1 3.02E-11 1

IGD 0.0177 0.0177 0.0014 0.0014 0.0003 0.0003 3.02E-11 1 3.02E-11 1 3.02E-11 1

D
iv

er
si

ty PFS 7 7.433 117 116.7 111.5 110.8 2.54E-11 1 2.56E-11 1 4.43E-07 0.11

S 0.9988 0.9988 0.8679 0.8844 0.9004 0.8997 1.11E-06 0.14 6.77E-11 0.21 0.40 0.56

uC
lin

ux Q
ua

lit
y HV 0.1956 0.1959 0.1300 0.1297 0.3030 0.3032 3.02E-11 1 3.02E-11 0 3.02E-11 1

ε 0.1029 0.1018 0.0783 0.0783 0.0107 0.0101 2.87E-11 1 2.38E-11 1 2.30E-11 1

IGD 0.0013 0.0013 0.0016 0.0016 0.0001 0.0001 2.97E-11 1 2.60E-10 1 2.97E-13 1

D
iv

er
si

ty PFS 106 106.9 982.5 981.9 2,934 2,941 2.95E-11 1 2.95E-11 1 3.02E-11 1

S 0.5809 0.5804 0.5125 0.5138 0.3610 0.3574 3.02E-11 0 1.20E-08 0.07 3.02E-11 0

Fi
as

co

Q
ua

lit
y HV 0.0238 0.0226 0.2879 0.2877 0.2894 0.2897 3.02E-11 1 3.02E-11 1 2.92E-09 0.95

ε 0.0833 0.0842 0.0036 0.0036 0.0036 0.0035 1.01E-11 1 1.10E-11 1 0.67 0.45

IGD 0.0064 0.0065 0.0002 0.0002 0.0002 0.0002 3.02E-11 1 3.02E-11 1 0.49 0.56

D
iv

er
si

ty PFS 10 9.933 2,232 2,231 1,928 1,920 2.74E-11 1 2.74E-11 1 3.01E-11 0

S 0.9721 0.9282 0.3039 0.3037 0.2959 0.2953 3.02E-11 0 3.02E-11 0 4.08E-05 0.20

Fr
ee

B
SD Q

ua
lit

y HV 0 0.0257 0.1323 0.1328 0.2485 0.2488 8.38E-10 1 8.39E-10 0.95 3.02E-11 1

ε 1 0.7926 0.1861 0.1860 0.0953 0.0953 1.61E-11 1 1.61E-11 1 2.98E-11 1

IGD 1 0.6022 0.0013 0.0013 0.0002 0.0002 1.61E-11 1 1.60E-11 1 3.02E-11 1

D
iv

er
si

ty PFS 0 5.333 476.5 475.7 1,386 1,383 1.62E-11 1 1.60E-11 1 3.00E-11 1

S 0 0.3990 0.5959 0.5949 0.7197 0.7185 3.02E-11 0.62 1.60E-11 0.62 3.02E-11 1

eC
os

Q
ua

lit
y HV 0.0399 0.0462 0.2591 0.2591 0.2876 0.2876 3.02E-11 1 3.02E-11 1 3.02E-11 1

ε 0.5974 0.5906 0.0975 0.0975 0.0382 0.0386 3.02E-11 1 2.53E-11 1 2.53E-11 1

IGD 0.0013 0.0013 0.0002 0.0002 5.80E-05 5.77E-05 3.02E-11 1 3.02E-11 1 3.02E-11 1

D
iv

er
si

ty PFS 50 55.17 2,886 2,881 14,421 14,064 3.00E-11 1 2.99E-11 1 3.02E-11 1

S 0.9386 0.9414 0.4551 0.4548 0.5368 0.5364 3.02E-11 0 3.02E-11 0 3.02E-11 1

[37], we also report the non-parametric effect size measure,
Â12, introduced by Vargha and Delaney [38]. It measures the
extent to which the first algorithm outperforms the second
one. According to Vargha and Delaney [38], the differences
between populations are considered as small, medium and
large when Â12 is over 0.56, 0.64, and 0.71, respectively.

VII. EXPERIMENTAL RESULTS

The results for each approach are analyzed in Section VII-A.
Sections VII-B and VII-C discuss the RQ1-RQ3. Finally,
Section VII-D presents results regarding the execution time
of SATIBEA on the largest SPL of the literature.

A. Results

This section presents the result of the approaches when
applied to the five models. These results are recorded in Table
IV. This table is composed of two parts. The columns IBEA (I),
Filtered (F) and SATIBEA (SI), records the measured details
about each approach. In particular, it records, for 30 executions
the median and average (column avg) values of the measured
metrics. The second part, i.e., columns SI VS I, F VS I, and SI
VS F, records the results of the statistical analysis results, i.e.,

the p-values and the effect sizes Â12. The rows of the table
record the results per examined model, hypervolume measure
(rows HV), Epsilon (rows ε), Inverted Generational Distance
(rows IGD), Pareto front size (rows PFS) and spread metric
(rows S) for the the 30 runs per approach. In addition, Figure
3a shows the distribution of the HVs on the 30 runs for all
the models and the evolution of the HV over time for Linux
is depicted in Figure 3b.

B. Comparing SATIBEA and Filtered with the state-of-the art,
answering RQ1 and RQ2

Our results indicate that SATIBEA outperforms the current
state-of-the-art (IBEA). The statistical analysis results, with
respect to the quality metrics, column SI VS I, suggest that
all the differences are significant with maximal effect size
(Â12 = 1.0). The resulting p-value are so small that nothing
changes when applying the Bonferroni correction. Regarding
the diversity metrics, SATIBEA provides better results with
respect to PFS but worse with respect to S. However, S is a
diversity metric which is only important when there is quality
in the solutions found, e.g., HV.

Additionally, these results reveal that SATIBEA is much

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Linux uClinux Fiasco FreeBSD eCos

H
yp
er
vo
lu
m
e

IBEA
Filtered

SATIBEA

(a) Distribution of the hypervolumes on the 30 runs

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 5 10 15 20 25 30

H
yp

er
vo

lu
m

e

Time in minutes

SATIBEA on Linux

(b) Hypervolume over time for SATIBEA on Linux

Fig. 3: Distribution and evolution of the hypervolumes.

better when it is applied on the two most heavily constraint
models, i.e., Linux and FreeBSD. In the median case of
Linux (Figure 3), SATIBEA produces configurations that cover
approximately 209,548 times more wider space, i.e., hyper-
volume, than IBEA. In the median case of FreeBSD, IBEA
failed to find even one solution that is valid. Furthermore,
the solutions found by SATIBEA do not only provide more
options, as shown by the PFS values, than the state-of-the-art
but they are also more stable, as shown in Figure 3a. All these
results indicate the superiority of our method.

Our results also indicate that the Filtered approach is better
than the state-of-the-art. The statistical analysis results, with
respect to the quality metrics and column F VS I, suggest that
in all but the uClinux model, the differences are significant.
The differences have high effect size (Â12 ≥ 0.95) on all the
four models it wins. Also, the statistical results do not change
by applying the Bonferroni correction. Similarly to SATIBEA,
in the cases of diversity, the Filtered provides better results
with respect to PFS, but worse with respect to S. However, as
already mentioned, this does not indicate that IBEA is better.

Conclusively, both proposed approaches are better than the
current state-of-the-art. Noticeable is the fact that SATIBEA
wins the current state-of-the-art in all the employed quality
metrics with maximal effect size (Â12 = 1.0). In addition,
when a more heavily constrained is considered, SATIBEA
performs much better than the state-of-the-art.

C. Comparing SATIBEA with Filtered, answering RQ3

Our results indicate that SATIBEA wins the Filtered method
in all the model according to the HV metric. For instance, for
FreeBSD, the median HV achieved by SATIBEA is almost
twice the one of Filtered, i.e., ≈0.25 VS ≈0.13. These
results are also statistically significant, both with and without
Bonferroni correction, with a relatively high effect size (above
Â12 = 0.95) on all the case. According to the Epsilon
and IGD metrics SATIBEA wins in all the models, with
statistical significance, except from the Fiasco where they are
approximately equal. Regarding the effect sizes of the diversity
measures, the two approaches are comparable with SATIBEA
having a slight advantage. With respect to S, SATIBEA has a
big difference in two cases, a medium difference in one and it
looses or it is equal in two cases. With respect to PFS, it wins

in three cases and looses in two. Therefore, since diversity is
not so important if we do not have quality, overall, our results
demonstrate that SATIBEA is the clear winner. It provides the
best results, statistically significant, and can handle effectively
heavily constrained FMs.

Conclusively, answering RQ3, our results suggest that SAT-
IBEA is able to outperform the Filtered approach, with HV
values ranging from 0.16 to 0.30.

D. Execution time of SATIBEA, answering RQ4

Our results indicate that the HV of the solutions achieved
by SATIBEA converges markedly the first 15 minutes (Figure
3b). After this point, the HV increases very slowly, suggesting
that SATIBEA stabilised on its ultimate solution in 15 minutes.
This is an important finding since Linux is the largest available
SPL hitherto reported upon in the literature. Both the smart
replacement and the smart mutation operators which use the
solver take less than six seconds. Thus, they help the fast
convergence of the search process.

VIII. DISCUSSION

This section discusses practical implications and threats to
the validity of the findings reported in the present work.

A. Practical Implications

In the SPL context, the major challenge is the production
of valid configurations. It is clear that until all constraints
are satisfied, the configuration is invalid. In other words, an
invalid product configuration is totally useless from practical
perspective. Therefore, the effort put by the search approach in
optimizing the other objectives is wasted when the resulting
configuration is invalid. To investigate this, we analyze the
results of the Linux FM. Specifically, we group the Pareto
front solutions of IBEA according to the number of violated
constraints. We visualize this situation by computing the hy-
pervolume values when the algorithm minimizes the violated
constraints. Figure 4 depicts the hypervolume achieved by the
Pareto front solutions according to each number of violated
constraints. We can observe that as the number of violated
constraints decreases, the hypervolume also decreases. These
results show that the constraints hamper the search process.
Indeed, the graph clearly suggests a decreasing trend. This

is formally confirmed by a linear regression which bestows
a relationship of the form f(x) = (5.67 × 10−5)x − 0.003.
This fit is good given its coefficient of determination R2

of 0.95. In other words, our linear f explains 95% of the
recorded values. Finally, it is clear that when no constraint is
violated, the hypervolume is almost 0. Since the hypervolume
represents how well the objectives are optimized, it shows
that IBEA fails to fulfill the 4 other objectives when dealing
with valid configurations. As a result, the optimization of
the other objectives is limited by the minimization of the
violated constraints. This explains why IBEA performs poorly
compared to the Filtered approach. These results introduce
the need for handling constraints independently of the search.
Thus, hybrid methods like SATIBEA are the key to success.

Our evaluation focuses on large SPLs because they are
typically used in industry [12], [13], [39] and they motivate
the need for automation. Generally, our results show that when
the number of constraints increases, the difficulty faced by
the search approaches also increases. Fortunately, our results
reveal that a higher number of constraints implies a higher
gap between the effectiveness of the proposed and the current
state-of-the-art approaches. Additionally, it should be noted
that SATIBEA has an additional benefit over the state-of-the-
art: it does not require any seeds. Thus, it avoids the necessary
off-line computation of the seeds, which according to Sayyad
et al. [11] consumed approximately 3 hours.

Apart from optimizing the objectives, the proposed ap-
proach can have additional applications. An interesting one is
to help engineers into correct and maintain FMs. To achieve
this, engineers can select multiple FM variants that represent
the potential problems or changes in the original FM. Then,
valid configurations (with respect to the FM variants) can
be selected and evaluated towards the original FM. Such an
approach can be automated as proposed by Henard et al. [40].
The important step here is the selection of valid configurations
from the erroneous FM variants that will reflect both the
potential problems and the targeted changes of the original

0

0.02

0.04

0.06

0.08

0.1

0.12

05001000150020002500

H
yp

er
vo

lu
m

e

Violated constraints

R2 = 0.955 Pareto front solutions
Linear regression

Fig. 4: Impact of the violated constraints on the hypervolume
for Linux. As solutions tend to conform to the constraints of
the model, the optimization of the other objectives degrades.

FM. One could argue that this can be achieved with invalid
configurations of the original FM. However, it is unclear how
to produce invalid configurations that are both relevant and
helpful in correcting the model.

Finally, we note the importance of the various quality
metrics. The hypervolume metric represents the extent in the
optimization of user objectives. Any improvements of this
metric yields a strictly better quality value [41]. In other words,
a very small change in the hypervolume implies a relatively
big impact in practice. Regarding the spread diversity measure,
spread configurations represents solutions that are diverse
in the space of the objectives, i.e., which achieve different
trade-offs. Concretely, the spread configurations suggest that
there are configurations in favor of each considered objective.
Solutions with low spread fail to propose multiple alternative
trade-offs. However, as already stated in Section VI-D diverse
solutions with low quality are not meaningful in practice.

B. Threats to Validity

Several threats to the validity of the present study are
identified. Our results are based on five SPLs. Hence, it is
possible that our conclusions do not generalize to other cases.
To reduce this threat, we took four different and large FMs
with different number of features and constraints. In particular,
the FMs we chose have a varied density of constraints, i.e., the
number of constraints per feature vary. We used both slightly
and heavily constrained models such as Linux and uClinux
with an average of respectively 50 and 1.3 constraints per
feature. Another threat is due to the randomness involved in
the approaches studied. Indeed, there is a chance that the
observed results happened by chance. To reduce this threat,
we performed each approach 30 times independently, thereby
reducing the influence of random effects. Another threat is
identified due to potential errors, unknown parameters or
differences in the implementation. In addition, the machines
used may influence the results. To reduce this threat, we
performed a careful verification of our results and several
manual tests at all stages of our implementation. Additionally,
we make publicly available both our implementation and our
data. Finally, a threat is due to the artificial way the values
of the attributes were assigned, i.e., the actual usage scenario,
and to the replication of the state-of-the-art. Unfortunately,
there is no available implementation of the previous work [12].
To overcome this issue, we carefully replicated and verified,
multiple times, all parameters and the technical details of the
experiments as described in [12]. Additionally, we used the
same framework, algorithms and settings as the previous work.

IX. RELATED WORK

One of the first approaches that aimed to optimize multiple
configuration goals is attributed to Olaechea et al. [42]. This
method uses a special form of FMs, called attributed FMs
which record quality attributes for the features. This technique
uses exact solving and consider FMs with one to three
objectives. However, it fails to scale due to the computation
of the exhaustive search it performs. The authors used FMs

with up to 12 features. Sayyad et al. [11] proposed the use
of advanced multi-objective evolutionary algorithms for SPLs
with five objectives to optimize. They experiment with five
algorithms and conclude that IBEA is the most suitable one
for the SPL context. Sayyad et al. were the first, to the authors
knowledge, to use constraint violation as an objective for the
search process. This approach was later extended by Sayyad
et al. [12] with the aim of scaling to large SPLs. It is this
technique that is investigated by the present paper, i.e., IBEA.
However, as shown by our results, the proposed techniques,
SATIBEA and Filtered are by far more effective.

Another approach that aims to optimize many objectives is
due to Henard et al. [43]. In this work, a genetic algorithm
is employed to generate a set of valid configurations. The
approach employs a SAT solver to select valid configurations
while maximizing the t-wise coverage of the selected set of
configurations and taking into account other parameters such
as the cost of the configurations. Despite the promising results,
it fails to scale to large FMs mainly due to the expensive t-
wise coverage computation [14]. In contrast, SATIBEA seeks
to provide scalable solutions for the MOO problem of config-
uring products for SPLs. Regarding constraints handling with
evolutionary approaches, several methodologies are proposed
in the literature, such as including constraint knowledge in
the fitness function [44], [45]. In this work, we use an external
SAT solver to repair valid configurations (smart mutation oper-
ator) and to generate valid configurations (smart replacement).

Most of the existing approaches generate configurations
that conform to the FM constraints while optimizing a single
other objective. Benavides et al. [46] imposed constraints
modeling extra-functional properties of the SPL features. They
then applied constraint satisfaction solvers to generate all the
possible configurations, the optimal ones etc. Another attempt
to optimize the extra-functional properties of configurations
was by White et al. [39]. They proposed to transform the
product configuration problem into a multi-dimensional multi-
choice knapsack problem to use known techniques to tackle
it. White et al. [47] developed a tool for the multi-step
configuration of evolving FMs. They show that it is possible
to derive configurations automatically by mapping the SPL
configuration problem to a constraint satisfaction one. Aiming
at t-wise coverage, Perrouin et al. [48] developed a tool
based on the Alloy SAT solver. Other work, e.g., [40], [49]
used a SAT solver to generate valid set of configurations.
Unlike the methods presented in the present paper, these
methods optimize only a single objective, i.e., either the t-wise
coverage or some form of attribute coverage. Furthermore,
these approaches fail to scale to large FMs.

There are few techniques that scale to very large SPLs.
Johansen et al. [50] use the covering array method based on
a SAT solver to generate configuration sets that cover all the
t-wise interactions between the features of an SPL. Similarly,
a search-based approach that achieves scalable but partial t-
wise coverage has been introduced in [14]. However, none of
them targets multiple objectives. Perhaps the closest work to
the present one is the one of Guo et al. [7]. Guo et al. propose

the use of a genetic algorithm to tackle multiple objectives.
To achieve this, it aggregates all objectives into one. This
practice fails to produce a wide range of configurations and
results in a single configuration that is only optimized for
a specific objective weighting scheme. Additionally, it uses
a repair process to make the candidate solutions valid with
respect to the constraints of the FM. This process restricts
the search process [11]. Since it was evaluated on artificial
models and thus, it is currently unclear whether it can provide
satisfactory solutions for real word FMs. Our study involves
the satisfaction of multiple objectives for large, heavily con-
strained and real-world FMs such as the Linux kernel.

Approaches for the automated analysis of FMs have pro-
liferated these last 20 years [19]. Such techniques enable
to extract information from the FM, such as identifying the
mandatory features or count the valid configurations of an
SPL. These techniques rely on binary decision diagrams or
solvers, such as SAT or Satisfiability Modulo Theory (SMT)
solvers. The efficiency of these techniques has been inves-
tigated by Pohl et al. [51] with the conclusion that these
approaches induce a certain overhead and that there is still
room for improvement. The use of SAT solvers for reasoning
on FMs has been reported as being an easy task [52]. In this
work the authors conclude that the previous reports on the
efficiency of SAT solvers is not incidental in practice. The
FMs used in this work are extracted from existing code such as
the Linux kernel. To the best of our knowledge, the efficiency
of automated analysis techniques have not been investigated
on such models. Finally, augmenting the features of FMs with
quality attributes such as cost has been used in several previous
studies, e.g., [11], [12], [42], [43], [53].

X. CONCLUSION AND FUTURE WORK

We have demonstrated that our SPL optimization approach,
SATIBEA, significantly outperforms the current state-of-the-
art with maximal effect size. We also provide results that show
that it is important to include constraint solving techniques in
SPL optimization approaches and that our technique scales to
the largest SPLs hitherto considered in the literature.

Since reproducibility has been identified as a central tenet of
the research in software engineering [37], we make the source
code of our implementation and our experimental data publicly
available at http://research.henard.net/SPL/ICSE_2015/.

Future work will investigate alternative ways to improve the
search process. Specifically, practices like parameter tuning
[54], supervised search [55] or hybrid approaches involving
both constraint-driven and genetic search will be considered.

XI. ACKNOWLEDGEMENTS

Mike Papadakis is supported by the National Research
Fund, Luxembourg, INTER/MOBILITY/14/7562175. Mark
Harman is supported by Engineering and Physical Sciences
Research Council (the EPSRC) grants Genetic Improvement
of Software for Multiple Objectives (GISMO: EP/I033688)
and Dynamic Adaptive Automated Software Engineering
(DAASE: EP/J017515).

http://research.henard.net/SPL/ICSE_2015/

REFERENCES

[1] A. Metzger and K. Pohl, “Software product line engineering and
variability management: Achievements and challenges,” in Proceedings
of the on Future of Software Engineering, ser. FOSE 2014. New
York, NY, USA: ACM, 2014, pp. 70–84. [Online]. Available:
http://doi.acm.org/10.1145/2593882.2593888

[2] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[3] P. Knauber, J. B. Muñoz, G. Böckle, J. C. S. d. P. Leite, F. v. d. Linden,
L. M. Northrop, M. Stark, and D. M. Weiss, “Quantifying product
line benefits,” in Revised Papers from the 4th International Workshop
on Software Product-Family Engineering, ser. PFE ’01. London,
UK, UK: Springer-Verlag, 2002, pp. 155–163. [Online]. Available:
http://dl.acm.org/citation.cfm?id=648114.748915

[4] M. Harman, Y. Jia, J. Krinke, B. Langdon, J. Petke, and Y. Zhang,
“Search based software engineering for software product line engi-
neering: a survey and directions for future work (keynote paper),” in
18th International Software Product Line Conference, ser. SPLC ’14,
Florence, Italy, September 2014, to appear.

[5] J. White, B. Doughtery, and D. C. Schmidt, “Filtered cartesian flattening:
An approximation technique for optimally selecting features while
adhering to resource constraints,” in 12th International Conference on
Software Product Lines, Sep. 2008, pp. 209–216.

[6] J. Li, X. Liu, Y. Wang, and J. Guo, “Formalizing feature selection
problem in software product lines using 0-1 programming,” in 6th Inter-
national Conference on Intelligent Systems and Knowledge Engineering,
2011.

[7] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, “A genetic algorithm for
optimized feature selection with resource constraints in software product
lines,” The Journal of Systems and Software, vol. 84, no. 12, pp. 2208–
2221, Dec. 2011.

[8] Z. Wu, J. Tang, C. K. Kwong, and C. Y. Chan, “An optimization model
for reuse scenario selection considering reliability and cost in software
product line development,” International Journal of Information Tech-
nology & Decision Making, vol. 10, no. 5, pp. 811–841, 2011.

[9] A. S. Sayyad, K. Goseva-Popstojanova, T. Menzies, and H. Ammar,
“On parameter tuning in search-based software engineering: A replicated
empirical study,” in International Workshop on Replication in Empirical
Software Engineering Research, Oct. 2013.

[10] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Optimum feature
selection in software product lines: Let your model and values guide
your search,” in 1st International Workshop on Combining Modelling
and Search-Based Software Engineering, 2013, pp. 22–27.

[11] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of user
preferences in search-based software engineering: A case study in
software product lines,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 492–501. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486853

[12] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Scalable product
line configuration: A straw to break the camel’s back,” in 28th Interna-
tional Conference on Automated Software Engineering, 2013, pp. 465–
474.

[13] F. Loesch and E. Ploedereder, “Optimization of variability in software
product lines,” in 11th International Software Product Line Conference,
2007, pp. 151–162.

[14] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product
lines,” IEEE Trans. Software Eng., vol. 40, no. 7, pp. 650–670, 2014.

[15] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, p. 11, 2012.

[16] J. Coplien, D. Hoffman, and D. M. Weiss, “Commonality and variability
in software engineering,” IEEE Software, vol. 15, no. 6, pp. 37–45, 1998.

[17] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product line
engineering,” IEEE Software, vol. 19, no. 4, pp. 58–65, 2002.

[18] T. Thum, D. Batory, and C. Kastner, “Reasoning about edits to
feature models,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 254–264. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070526

[19] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis
of feature models 20 years later: A literature review,” Inf. Syst.,
vol. 35, no. 6, pp. 615–636, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2010.01.001

[20] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski, “A survey of variability modeling in industrial
practice,” in Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems, ser. VaMoS ’13.
New York, NY, USA: ACM, 2013, pp. 7:1–7:8. [Online]. Available:
http://doi.acm.org/10.1145/2430502.2430513

[21] R. Marler and J. Arora, “Survey of multi-objective optimization methods
for engineering,” Structural and Multidisciplinary Optimization,
vol. 26, no. 6, pp. 369–395, 2004. [Online]. Available: http:
//dx.doi.org/10.1007/s00158-003-0368-6

[22] E. Zitzler and S. Knzli, “Indicator-based selection in multiobjective
search,” in Parallel Problem Solving from Nature - PPSN VIII,
ser. Lecture Notes in Computer Science, X. Yao, E. Burke,
J. Lozano, J. Smith, J. Merelo-Guervs, J. Bullinaria, J. Rowe,
P. Tio, A. Kabn, and H.-P. Schwefel, Eds., vol. 3242. Springer
Berlin Heidelberg, 2004, pp. 832–842. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-30217-9 84

[23] R. Olaechea, D. Rayside, J. Guo, and K. Czarnecki, “Comparison of
exact and approximate multi-objective optimization for software product
lines,” in 18th International Software Product Line Conference.

[24] R. Olaechea, “Optimization of variability in software product lines,”
Master’s thesis, University of Waterloo, Ontario, 2013.

[25] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki,
“Reverse engineering feature models,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 461–470. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985856

[26] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “Vari-
ability modeling in the systems software domain,” Generative Software
Development Laboratory, University of Waterloo, Technical Report,
2012.

[27] ——, “Variability modeling in the real: A perspective from the
operating systems domain,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’10. New York, NY, USA: ACM, 2010, pp. 73–82. [Online].
Available: http://doi.acm.org/10.1145/1858996.1859010

[28] D. L. Berre and A. Parrain, “The sat4j library, release 2.2,” JSAT, vol. 7,
no. 2-3, pp. 59–6, 2010.

[29] J. J. Durillo and A. J. Nebro, “jmetal: A java framework for multi-
objective optimization,” Advances in Engineering Software, vol. 42,
no. 10, pp. 760–771, 2011.

[30] J. Knowles, L. Thiele, and E. Zitzler, “A Tutorial on the Performance
Assessment of Stochastic Multiobjective Optimizers,” Computer Engi-
neering and Networks Laboratory (TIK), ETH Zurich, TIK Report 214,
Feb. 2006.

[31] D. Brockhoff, T. Friedrich, and F. Neumann, “Analyzing hypervolume
indicator based algorithms,” in Proceedings of the 10th International
Conference on Parallel Problem Solving from Nature: PPSN X. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 651–660. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-87700-4 65

[32] T. Hawkins, Lebesgue’s theory of integration: its origins and develop-
ment. American Mathematical Soc., 2001, vol. 282.

[33] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G.
da Fonseca, “Performance assessment of multiobjective optimizers:
an analysis and review,” IEEE Trans. Evolutionary Computation,
vol. 7, no. 2, pp. 117–132, 2003. [Online]. Available: http:
//dx.doi.org/10.1109/TEVC.2003.810758

[34] G. B. L. David A. Van Veldhuizen, “Multiobjective evolutionary algo-
rithm research: A history and analysis,” Tech. Rep.

[35] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[36] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
of the 33rd International Conference on Software Engineering, ser.
ICSE ’11. New York, NY, USA: ACM, 2011, pp. 1–10. [Online].
Available: http://doi.acm.org/10.1145/1985793.1985795

[37] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012.

http://doi.acm.org/10.1145/2593882.2593888
http://dl.acm.org/citation.cfm?id=648114.748915
http://dl.acm.org/citation.cfm?id=2486788.2486853
http://dx.doi.org/10.1109/ICSE.2009.5070526
http://dx.doi.org/10.1016/j.is.2010.01.001
http://doi.acm.org/10.1145/2430502.2430513
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/978-3-540-30217-9_84
http://dx.doi.org/10.1007/978-3-540-30217-9_84
http://doi.acm.org/10.1145/1985793.1985856
http://doi.acm.org/10.1145/1858996.1859010
http://dx.doi.org/10.1007/978-3-540-87700-4_65
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1109/TEVC.2003.810758
http://doi.acm.org/10.1145/1985793.1985795

[38] A. Vargha and H. D. Delaney, “A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong,”
Journal on Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[39] J. White, B. Dougherty, and D. C. Schmidt, “Selecting highly optimal
architectural feature sets with filtered cartesian flattening,” Journal of
Systems and Software, vol. 82, no. 8, pp. 1268–1284, 2009.

[40] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
“Assessing software product line testing via model-based mutation:
An application to similarity testing,” in Proceedings of the 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation Workshops, ser. ICSTW ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 188–197. [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2013.30

[41] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator
revisited: On the design of pareto-compliant indicators via weighted
integration,” in Proceedings of the 4th International Conference
on Evolutionary Multi-criterion Optimization, ser. EMO’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 862–876. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1762545.1762618

[42] R. Olaechea, S. Stewart, K. Czarnecki, and D. Rayside, “Modelling
and multi-objective optimization of quality attributes in variability-rich
software,” in Proceedings of the Fourth International Workshop
on Nonfunctional System Properties in Domain Specific Modeling
Languages, ser. NFPinDSML ’12. New York, NY, USA: ACM, 2012,
pp. 2:1–2:6. [Online]. Available: http://doi.acm.org/10.1145/2420942.
2420944

[43] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon, “Multi-
objective test generation for software product lines,” in Proceedings
of the 17th International Software Product Line Conference, ser.
SPLC ’13. New York, NY, USA: ACM, 2013, pp. 62–71. [Online].
Available: http://doi.acm.org/10.1145/2491627.2491635

[44] B. G. W. Craenen, A. E. Eiben, and E. Marchiori, “How to handle
constraints with evolutionary algorithms,” in Practical Handbook of
Genetic Algorithms. Chapman & Hall/CRC, 2001, pp. 341–361.

[45] D. Reid, “Genetic algorithms in constrained optimization,” Mathematical
and Computer Modelling, vol. 23.

[46] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated reasoning
on feature models,” in Proceedings of the 17th International Conference
on Advanced Information Systems Engineering, ser. CAiSE’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 491–503. [Online]. Available:
http://dx.doi.org/10.1007/11431855 34

[47] J. White, J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, and

D. C. Schmidt, “Evolving feature model configurations in software
product lines,” Journal of Systems and Software, vol. 87, pp. 119–136,
2014.

[48] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. l. Traon, “Automated
and scalable t-wise test case generation strategies for software product
lines,” in Proceedings of the 2010 Third International Conference
on Software Testing, Verification and Validation, ser. ICST ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 459–468.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2010.43

[49] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon,
“Towards automated testing and fixing of re-engineered feature models,”
in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 1245–1248. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2486788.2486975

[50] M. F. Johansen, O. Haugen, and F. Fleurey, “An algorithm for generating
t-wise covering arrays from large feature models,” in Proceedings of
the 16th International Software Product Line Conference - Volume
1, ser. SPLC ’12. New York, NY, USA: ACM, 2012, pp. 46–55.
[Online]. Available: http://doi.acm.org/10.1145/2362536.2362547

[51] R. Pohl, K. Lauenroth, and K. Pohl, “A performance comparison of
contemporary algorithmic approaches for automated analysis operations
on feature models,” in Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 313–
322. [Online]. Available: http://dx.doi.org/10.1109/ASE.2011.6100068

[52] M. Mendonca, A. Wasowski, and K. Czarnecki, “Sat-based analysis
of feature models is easy,” in Proceedings of the 13th International
Software Product Line Conference, ser. SPLC ’09. Pittsburgh, PA,
USA: Carnegie Mellon University, 2009, pp. 231–240. [Online].
Available: http://dl.acm.org/citation.cfm?id=1753235.1753267

[53] G. Zhang, H. Ye, and Y. Lin, “Using knowledge-based systems to
manage quality attributes in software product lines,” in Proceedings of
the 15th International Software Product Line Conference, Volume 2,
ser. SPLC ’11. New York, NY, USA: ACM, 2011, pp. 32:1–32:7.
[Online]. Available: http://doi.acm.org/10.1145/2019136.2019172

[54] A. Arcuri and G. Fraser, “Parameter tuning or default values? an
empirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[55] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial
interaction testing strategies using hyperheuristic search,” RN/UCL,
vol. 13, p. 17, 2013.

http://dx.doi.org/10.1109/ICSTW.2013.30
http://dl.acm.org/citation.cfm?id=1762545.1762618
http://doi.acm.org/10.1145/2420942.2420944
http://doi.acm.org/10.1145/2420942.2420944
http://doi.acm.org/10.1145/2491627.2491635
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1109/ICST.2010.43
http://dl.acm.org/citation.cfm?id=2486788.2486975
http://dl.acm.org/citation.cfm?id=2486788.2486975
http://doi.acm.org/10.1145/2362536.2362547
http://dx.doi.org/10.1109/ASE.2011.6100068
http://dl.acm.org/citation.cfm?id=1753235.1753267
http://doi.acm.org/10.1145/2019136.2019172

