
MutaLog: a Tool for Mutating Logic Formulas

Christopher Henard, Mike Papadakis, and Yves Le Traon
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg
Luxembourg, Luxembourg

Email: {christopher.henard, michail.papadakis, yves.letraon}@uni.lu

Abstract—Assessing the quality of a test suite is an important
step of the testing process. Indeed, it is necessary to ensure that
the different test cases target all the critical parts of the system.
Model-based testing is a famous technique to perform testing.
It uses a model of the system under test. Most of these models
include logic formulas. Such formulas encompasses constraints
to be satisfied within a system, e.g., an expected behavior or
particular conditions to be fulfilled at a given stage of the
execution. One way to evaluate the quality of a test suite with
respect to these logic constraints is to use mutation analysis.
This technique has been proven to be effective for evaluating
the quality of a test suite in both model-based and non-model-
based testing. However, while many mutation analysis tools
exist, none of them performs on logic formulas. Towards this
direction, this paper introduces MutaLog, an open source tool
which allows performing mutation analysis on logic formulas.

I. INTRODUCTION

Testing a system is important to ensure both its correctness
and reliability [1]. In order to provide a high confidence in
the testing process, it is important to make certain that the
quality of the test suite is high. Getting the expected output
with a test suite targeting only the trivial part of the system
is pointless. As a result, it is necessary to guarantee that the
different test cases are targeting all the critical parts of the
system.

Model-based testing is a famous technique to perform
testing [2]. To this end, it uses a model of the system under
test from which test cases are derived. Most of the software
models include logic formulas. Such formulas encompasses
constraints to be satisfied within a system, e.g., an expected
behavior or particular conditions to be fulfilled at a given
stage of the execution. For instance, the activation of a
particular module in the system requires another module to
be enabled.

One way to evaluate whether such model constraints
are satisfied during the testing process is to use mutation
analysis [3], [4], [5]. Mutation analysis aims at evaluating
the quality of test suites. It is generally applied on programs
and it involves the modification of the original software
artifact into altered versions. Each of this altered version is
called a mutant. Each mutant encompasses a defect willingly
introduced. The test suite is then evaluated on these mutants
to establish whether or not they are able to reveal the
introduced defects. With this respect, the artifact on which

we apply mutation analysis is a logic formula. Thus, a
mutant is an altered version of this formula.

Mutation analysis has been applied to various models,
e.g. Feature Models [6], Finite State Machines [7], Petri
nets [8] or security policies metamodels [9]. While tools
exist to perform mutation analysis on programs and software
models, there is no tool available to the authors knowledge to
perform mutation analysis of logic formulas. Here, it should
be noted that the scope of the tool is bounded to formulas
derived from models. This means that the formulas represent
constraints that must always hold. In this respect, the present
paper introduces MutaLog, an open source tool which allows
performing mutation analysis on logic formulas.

The remainder of this paper is organized as follows.
Section II shows the adoption of MutaLog. Section III
presents the concepts underlying the approach performed by
the tool and Section IV describes the approach itself. Section
V introduces the functionalities, architecture and usage of
the tool. Finally, Section VI discusses related work before
Section VII concludes the paper.

II. ADOPTION OF MUTALOG

MutaLog has been adopted in several work. In [10], it is
used to transform the logic formula representing a model for
software product line in order to produce a more accurate
model of the system. The transformation are made on the
logic constraints of the model. Another application of the
tool aims at creating mutants of a logic formula to assess the
quality of software product line test suites [6]. The results
of this work show that the mutants employed by the tool
are effective to characterize a test suite. In particular, the
diversity of the test suite is linked with its ability to detect
mutants.

Recently, it has been shown that measuring the number
of model-based defects gives a stronger correlation to code-
level faults than measuring the number of the exercised t-
wise interactions in the context of Combinatorial Interaction
Testing [11]. The defects introduced in the models are al-
terations of logic constraints, such as the mutation operators
implemented by the tool.



III. BACKGROUND

A. Logic Formulas

In this paper, we use boolean logic formulas expressed
in Conjunctive Normal Form (CNF). Such formulas are
a conjunction of n clauses C1, ..., Cn, where a clause is
a disjunction of m literals. A literal is a variable or its
negation. Thus, a CNF formula φ is of the form:

φ =

n∧
i=1

 m∨
j=1

lj


︸ ︷︷ ︸

clause

, where lj is a literal.

For instance, the following boolean CNF formula ψ =
(a ∨ b) ∧ c ∧ (b ∨ ¬c) has 3 variables: a, b and c, and 3
clauses: (a ∨ b), c and (b ∨ ¬c).

B. Test Case and Test suite

A test case is an assignment of the variables of a given
formula. For instance, tc1 = {a = false, b = true, c =
true} is a test case for the above-mentioned formula ψ.

We say that a test case satisfies a formula if the formula
is evaluated to true with respect to the assignment of the
test case. For instance, evaluating the formula ψ with the
assignment of tc1 leads to ψ = (false ∨ true) ∧ true ∧
(true ∨ false) = true. As a result, tc1 satisfies ψ. On the
contrary, tc2 = {a = true, b = true, c = false} does not
satisfy the formula ψ since it is evaluated to ψ = (true ∨
true) ∧ false ∧ (true ∨ true) = false.

Similarly, we say that a test suite satisfies a formula ψ
if all the test cases of the test suite satisfies ψ. A test suite
does not satisfy a formula ψ if at least one test case of this
test suite does not satisfy ψ. Since the formulas used by the
tool are dervied from models, the formula under test must
be evaluated to true.

C. Invalid Formula

We say a formula is invalid if there is no test case that can
satisfy it. For instance, the formula ψ = a ∧ ¬a is invalid,
i.e. can never be true. In this work, since logic formulas are
derived from models, invalid ones are meaningless.

D. Mutation Analysis

Mutation analysis forms a powerful technique with var-
ious applications like software testing [12], [13] and de-
bugging [14]. It is applied by producing altered (mutant)
versions of the programs artifacts like source code, specifi-
cation models, etc. [12], [13]. The underlying idea of this
approach is to evaluate the ability of test cases to reveal
behavior differences between the original (unaltered) and
the mutated (altered) artifact versions.

The mutated versions represent possible defects of the
artifact under test and they are produced based on a set
of well defined rules called mutant operators [13]. Mutant
operators are defined on “syntactic descriptions to make

syntactic changes to the syntax or objects developed from
the syntax” [13]. Mutation analysis denotes the process of
introducing these mutants. The ability of the test cases to
reveal the introduced mutants is examined in order to use this
approach for testing purposes (mutation testing). If a mutant
can be detected by a test case, the mutant is called killed.
Otherwise, it is called live. Therefore, measuring the ratio
of the killed mutants to the totally introduced ones results
in a quality measure of the testing process, called mutation
score. This measure demonstrates the ability of the tests to
detect errors:

Mutation score =
mutants killed

total mutants - invalid mutants
.

It should be noted that invalid formulas are not taken
into account since formulas are derived from models. In the
context of this paper, mutants are produced by applying a
set of mutant operators to the logic formula. The test case
evaluation is performed by checking whether the test cases
satisfy the formula, i.e. whether the formula is evaluated
to true. Consequently, a mutant is said to be killed if its
formula is not satisfied, i.e. if the formula is evaluated to
false.

IV. APPROACH

The mutation analysis approach for logic formulas per-
formed by the tool operates as follows. First, mutants of the
considered logic formulas are created by applying different
operators. Then, it is evaluated which mutants are killed by
the test cases of the test suite. Finally, the mutation score is
returned.

In this section, we will consider the following logic
formula:

ψ = (a ∨ b) ∧ (¬a ∨ c)

and the following test suite:

T = {tc1, tc2}, where
tc1 = {a = true, b = true, c = true} and
tc2 = {a = true, b = false, c = true}

as a running example.

A. Creation of Mutants of the Logic Formula

The first step of the approach creates mutants of the logic
formula by applying different mutation operators on it. The

Table I
MUTANT OPERATORS FOR CNF LOGIC FORMULAS

Mutation Operator Action
Literal Omission (LO) A literal is removed
Literal Negation (LN) A literal is negated
Clause Omission (CO) A clause is removed
Clause Negation (CN) A clause is negated
AND Reference (AR) An AND operator is replaced by OR
OR Reference (OR) An OR operator is replaced by AND



Table II
APPLICATION OF THE MUTANT OPERATORS TO THE EXAMPLE FORMULA ψ = (a ∨ b) ∧ (¬a ∨ c). THE UNDERLINED MUTANTS ARE THOSED KILLED

BY THE TEST SUITE T = {tc1, tc2}, WHERE tc1 = {a = true, b = true, c = true} AND tc2 = {a = true, b = false, c = true}

Literal Omission Literal Negation Clause Omission Clause Negation AND Reference OR Reference

LO1 = b ∧ (¬a ∨ c) LN1 = (¬a ∨ b) ∧ (¬a ∨ c) CO1 = (¬a ∨ c) CN1 = ¬a ∧ ¬b ∧ (¬a ∨ c) AR1 = (a ∨ b ∨ ¬a ∨ c) OR1 = a ∧ b ∧ (¬a ∨ c)

LO2 = a ∧ (¬a ∨ c) LN2 = (a ∨ ¬b) ∧ (¬a ∨ c) CO2 = (a ∨ b) CN2 = (a ∨ b) ∧ a ∧ ¬c OR2 = (a ∨ b) ∧ ¬a ∧ c

LO3 = (a ∨ b) ∧ c LN3 = (a ∨ b) ∧ (a ∨ c)

LO4 = (a ∨ b) ∧ ¬a LN4 = (a ∨ b) ∧ (¬a ∨ ¬c)

6 mutation operators implemented by the tool are taken
from [6], [15], [16] and presented in Table I. The first four
operators respectively remove and negate one literal or one
clause within the formula. The last two operators transforms
an AND into an OR and vice-versa.

The application of these operators to the example formula
ψ give the mutants listed in Table II. Here, it should be
noted that the application of the operators can add or remove
clauses within the formula, and that none of the resulting
mutant is an invalid formula.

B. Evaluation of the Mutation Score
The second step of the approach checks whether for each

mutant created there is one test case in the test suite that
kills it. To this end, a satisfiability (SAT) solver is used to
evaluate the satisfiability of the formula given the variables
assignment of the test case. SAT solver are widely used
to evaluate constrained boolean expressions, e.g. [17]. As a
result, for each mutant, it is evaluated whether there is one
test case that does not satisfy the formula. When such a test
case exist, the mutant is said to be killed.

Considering the example, the 9 mutants underlined in
Table II are killed by the test cases. It means that the two
assignments of tc1 and tc2 satisfy the other mutants. Thus,
the mutation score achieved by this test suite is 9

15 = 60%.

V. THE MUTALOG TOOL

MutaLog is an open source1 Java application of around
2,000 lines of code2 in its current version. It implements the
mutation analysis approach for logic formulas presented in
the previous section.

A. Features
MutaLog allows performing the following actions:
• Loading a logic formula from a file. MutaLog supports

the DIMACS (Conjunctive Normal Form) format,
• Visualizing the clauses of the formula,
• Creating mutants of the formula by applying the oper-

ators presented in the previous section,
• Loading a test suite and visualize the test cases,
• Evaluating the mutation score of the test suite towards

the formula mutants.
1The code source is available at https://github.com/

christopherhenard/mutalog.
2Measured with cloc http://cloc.sourceforge.net/.

B. Architecture

1) General: MutaLog implements the Model-View-
Controller (MVC) architecture [18]. MVC allows separating
the internal representation of the information and its logic
(the model) from the graphical representation (the view)
and the user’s interaction with it (the controller(s)). Thus,
the model, which corresponds to the business logic of
the application is observed by the view, which graphically
represents the model. When the user performs an action
on the view, a controller acts on the model, thus changing
its internal representation and updating the view. The main
advantage of MVC is the separation of concerns and the
code reusability.

To implement the MVC architecture, the application is
organized into packages. Thus, the Java classes are grouped
into a conceptually coherent way depending on their func-
tionalities. Thus, the core package corresponds to the
model while the gui package contains the classes related to
the views and controllers. Figure 1 represents the package
architecture of the application. The tool also makes use of
common design patterns [19], like or the adapter pattern
to map the model of complex graphical component to the
tool’s model or the observer pattern to implement the MVC
architecture.

2) MutaLog’s Main Components: The architecture of
MutaLog is presented on Figure 2. MutaLog takes as input
the logic formula and the test suite. From the logic formula,
the formula mutants are created by the mutant operators.
Then, using a satisfiability (SAT) solver, the test suite is
evaluated towards the mutants. Finally, the mutation score
is returned.

3) The core package: This package contains the classes
related to the business logic of the application (the model).
The class diagram of this package and its sub-packages is

Figure 1. MutaLog’s Packages Architecture

https://github.com/christopherhenard/mutalog
https://github.com/christopherhenard/mutalog
http://cloc.sourceforge.net/


SAT 
Solver

Mutant
Operators

Logic formula

Mutation score

EvaluationFormula
Mutants

Creation

Test suite

Figure 2. MutaLog’s Main Components Architecture

represented on Figure 4. In the following, we describe the
role of each class:

• core.ModelMutaLog: This class is the model of
the application, it contains the main business logic, like
the possibility to load a logic formula,

• core.CNFFormula: This class represents a logic
formula under the CNF format,

• core.Clause: This class represents a clause of the
CNF formula,

• core.Literal: This class represents a literal of a
clause,

• core.Mutant: This class represents a mutated logic
formula,

• core.TestSuite: This class represents a test suite
for a logic formula,

• core.Test: This class represents a given test case
of the test suite.

C. Libraries

MutaLog uses two external libraries in addition to the
standard Java library:
• Sat4j3, which provides an efficient SAT solver for Java

and which is used to evaluate whether an assignment
satisfies a formula and to remove invalid mutants,

• JCommander4, which simplifies the parsing of com-
mand line arguments and which is used for the com-
mand line interface of the tool.

D. Usage

The MutaLog tool can be used with both a command
line interface (CLI) and graphical user interface (GUI).
The command line interface eases the use of the tool in a
scripting or automated context while the GUI is more user-
friendly. Figure 3 provides a screenshot of the GUI. The
main window of the application contains a tool bar which
provides a quick access to the main functions of the tool.

3http://www.sat4j.org/
4http://jcommander.org/

Figure 3. MutaLog’s Graphical User Interface

http://www.sat4j.org/
http://jcommander.org/


Figure 4. MutaLog’s Core Classes

In terms of end use, an HTML user guide (see Figure 5) is
embedded in the application to help the user using the tool.
In terms of development, the source code and the Javadoc
documentation are available. As the tool is open source, it
can be used as a library as well. Finally, it is planned to build
an Eclipse plugin to integrate the use of the tool within the
Eclipse environment.

VI. RELATED WORK

Mutation testing and analysis have been widely applied to
test specifications or models [12]. Such models include, Petri
nets [8], security policies metamodels [9] or Finite State
Machines [7]. In this paper, we focus on logic formulas.
Such formulas can represent various models, e.g., Feature
Models [6] for Software Product Lines.

Several work on mutation analysis are related to the
present one. Andrew et al. [3] use mutation analysis to

produce mutants and to show that they be used to predict
the detection effectiveness of real faults. In this paper, we
do not focus on whether or not the generated mutants
are representative of real defects. Gargantini and Fraser
proposed a method in order to generate tests for possible
faults of boolean expressions [20]. Here, we do not focus on
test generation. We evaluate a test suite according to altered
boolean formulas. Whether the altered versions represent
possible faults of boolean expression is not evaluated in this
paper. In the context of logic-based testing, Kaminski et al.
[15], [21] use a logic mutation approach to generate only
subsuming higher order logic mutants. This approach aims
at designing tests depending on logical expressions. In this
paper, mutation operators are applied on a logic formula.
The objective is only to evaluate the quality of a test suite
according to the mutants of the formula.

Figure 5. MutaLog’s Documentation



Finally, regarding mutation analysis tools, several tool
exist, such as Proteum/fl [22], µJava [23] or Javalanche [24].
However, all the existing tools perform mutation analysis of
programs. To the best of the authors knowledge, there is no
tool which performs mutation analysis of logic formulas.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced an open source and freely
distributed research tool, MutaLog, which performs logic
mutation. The tool allows loading a logic formula, creating
various mutants of the formula and evaluating the mutation
score of a given test suite. To the best of the authors
knowledge, MutaLog is the first tool available which allows
performing mutation analysis of logic formulas.

The version of MutaLog presented in this paper is the first
one. In future, MutaLog will be extended with additional
features, including:
• Addition of new mutation operators,
• Support of additional formats than CNF for boolean

logic,
• Support of additional logics, e.g., first order logic,
• Integration into an Eclipse plugin.
Finally, we invite researchers, students and developers to

use our tool and/or to contribute to its development:

http://research.henard.net/SPL/MutaLog/.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to Software Testing,
1st ed., 2008.

[2] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H.
Travassos, “A survey on model-based testing approaches: A
systematic review,” in WEASELTech, 2007, pp. 31–36.

[3] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using mutation analysis for assessing and comparing testing
coverage criteria,” IEEE Trans. Software Eng., vol. 32, no. 8,
pp. 608–624, 2006.

[4] R. Geist, A. J. Offutt, and F. C. H. Jr., “Estimation and en-
hancement of real-time software reliability through mutation
analysis,” IEEE Trans. Computers, vol. 41, no. 5, pp. 550–
558, 1992.

[5] M. Papadakis and N. Malevris, “Mutation based test case
generation via a path selection strategy,” vol. 54, no. 9, 2012,
pp. 915–932.

[6] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L.
Traon, “Assessing software product line testing via model-
based mutation: An application to similarity testing,” in ICST
Workshops, 2013, pp. 188–197.

[7] J.-h. Li, G.-x. Dai, and H.-h. Li, “Mutation analysis for testing
finite state machines,” in ISECS, 2009, pp. 620–624.

[8] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E.
Delamaro, and E. Wong, “Mutation testing applied to validate
specifications based on petri nets,” in ICFDT, 1996, pp. 329–
337.

[9] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti,
“Xacmut: Xacml 2.0 mutants generator,” in ICST Workshops,
2013, pp. 28–33.

[10] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon, “Towards automated testing and fixing of re-
engineered feature models,” in ICSE, 2013, pp. 1245–1248.

[11] M. Papadakis, C. Henard, and Y. L. Traon, “Sampling pro-
gram inputs with mutation analysis: Going beyond combina-
torial interaction testing,” ICST, 2014.

[12] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Trans. Softw. Eng.,
vol. 37, no. 5, pp. 649 –678, sept.-oct. 2011.

[13] J. Offutt, “A mutation carol: Past, present and future,” Infor-
mation & Software Technology, vol. 53, no. 10, pp. 1098–
1107, 2011.

[14] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-
based fault localization,” Software Testing, Verification and
Reliability, pp. n/a–n/a, 2013.

[15] G. K. Kaminski, U. Praphamontripong, P. Ammann, and
J. Offutt, “A logic mutation approach to selective mutation for
programs and queries,” Information & Software Technology,
vol. 53, no. 10, pp. 1137–1152, 2011.

[16] M. F. Lau and Y. T. Yu, “An extended fault class hierar-
chy for specification-based testing,” ACM Trans. Softw. Eng.
Methodol., vol. 14, no. 3, pp. 247–276, Jul. 2005.

[17] P. Arcaini, A. Gargantini, and E. Riccobene, “Optimizing the
automatic test generation by sat and smt solving for boolean
expressions,” in ASE, 2011, pp. 388–391.

[18] G. E. Krasner and S. T. Pope, “A cookbook for using the
model-view controller user interface paradigm in smalltalk-
80,” J. Object Oriented Program., vol. 1, no. 3, pp. 26–49,
Aug. 1988.

[19] L. Rising, The patterns handbook: Techniques, strategies, and
applications, 1998.

[20] A. Gargantini and G. Fraser, “Generating minimal fault
detecting test suites for general boolean specifications,” In-
formation & Software Technology, vol. 53, no. 11, pp. 1263–
1273, 2011.

[21] G. Kaminski, P. Ammann, and J. Offutt, “Improving logic-
based testing,” Journal of Systems and Software, vol. 86,
no. 8, pp. 2002–2012, 2013.

[22] M. Papadakis, M. E. Delamaro, and Y. L. Traon, “Proteum/fl:
A tool for localizing faults using mutation analysis,” in SCAM,
2013, pp. 94–99.

[23] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An automated
class mutation system: Research articles,” Softw. Test. Verif.
Reliab., vol. 15, no. 2, pp. 97–133, Jun. 2005.

[24] D. Schuler and A. Zeller, “Javalanche: Efficient mutation
testing for java,” in ESEC/FSE, 2009, pp. 297–298.

http://research.henard.net/SPL/MutaLog/

	Introduction
	Adoption of MutaLog
	Background
	Logic Formulas
	Test Case and Test suite
	Invalid Formula
	Mutation Analysis

	Approach
	Creation of Mutants of the Logic Formula
	Evaluation of the Mutation Score

	The MutaLog Tool
	Features
	Architecture
	General
	MutaLog's Main Components
	The core package

	Libraries
	Usage

	Related Work
	Conclusion and Future Work
	References

