Similarity Testing for Access Control

Antonia Bertolino?, Said Daoudagh?®, Donia El KatebP,
Christopher Henard”, Yves Le Traon”, Francesca Lonetti®, Eda Marchetti?,
Tejeddine Mouelhi, and Mike Papadakis”

@[stituto di Scienza e Tecnologie dell’Informazione “A. Faedo” Consiglio Nazionale delle
Ricerche via G. Moruzzi, 1 - 56124 Pisa, Italy, {firstname.lastname} @isti.cnr.it
b Interdisciplinary Research Centre, SnT, University of Luzembourg, Luzembourg,
{firstname.lastname} Quni.lu

Abstract

Context: Access Control is among the most important security mechanisms,
and XACML is the de facto standard for specifying, storing and deploying
access control policies. Since it is critical that enforced policies are correct,
policy testing must be performed in an effective way to identify potential
security flaws and bugs. In practice, exhaustive testing is impossible due
to budget constraints. Therefore the tests need to be prioritized so that re-
sources are focused on their most relevant subset.

Objective: This paper tackles the issue of access control test prioritization.
It proposes a new approach for access control test prioritization that relies
on similarity.

Method: The approach has been applied to several policies and the results
have been compared to random prioritization (as a baseline). To assess the
different prioritization criteria, we use mutation analysis and compute the
mutation scores reached by each criterion. This helps assessing the rate of
fault detection.

Results: The empirical results indicate that our proposed approach is effec-
tive and its rate of fault detection is higher than that of random prioritization.
Conclusion: We conclude that prioritization of access control test cases can
be usefully based on similarity criteria.

Keywords: Similarity, Test Prioritization, Security Policies

Preprint submitted to Elsevier July 4, 2014

1. Introduction

Modern networked systems must be equipped with security services that
provide adequate protection to users and companies in a relatively open
environment. Several approaches and infrastructures, e.g., [1, 2] have been
recently proposed for the delivery of adaptive dynamic services that can
provide seamless connectivity while preserving privacy and confidentiality of
personal and critical data.

Security is achieved through appropriate mechanisms that guarantee the
confidentiality, integrity and availability (the so-called CIA triad) of on-line
data. Among security mechanisms, one important component is the access
control system, which mediates all requests of access to protected data. Ac-
cess control ensures that only the intended, i.e., authorized users can access
the data, and that these intended users are only given the level of access re-
quired to accomplish their tasks. In short, the access control system replies
to an authorization request with a permit/deny decision that is typically
based on predefined security policies. Any fault in the access control system
could lead to security flaws, resulting in either denial of accesses that should
be allowed, or, even worse, allowance of accesses to non authorized users.
Thus, it is important to perform a careful verification and validation of such
system.

XACML [3] is the de facto standard for specifying, storing and deploying
access control policies. However, the process of XACML policy specification
can be error-prone due to the language complexity. Several approaches have
been proposed to automate the generation of XACML tests, including Targen
[4] and X-CREATE [5]. A common drawback of existing tools is that they
produce a huge number of tests. For evident limitations of testing budget
and time, it is generally impossible to run all those tests and check that
the results are correct (this latter step is usually done manually). Therefore
means to identify, among the many generated tests, those ones that deserve
higher priority are crucial. This paper focuses on this specific issue, namely,
on XACML test prioritization.

Test prioritization has been widely investigated in the field of software
testing: it aims at defining a test execution order according to some criteria
(e.g., coverage, fault detection rate), so that those tests that have a higher
priority are executed before the ones having a lower priority. Several pro-
posals include approaches for test prioritization in the context of regression
testing [6, 7]. We clarify that in this paper we do not address prioritiza-

tion techniques expressly for regression testing; more in general we aim at
deriving a test execution order for a given test suite.

In [8], several test prioritization techniques are used to increase the fault
detection rate of test suites. More recent results [9] still confirm the effec-
tiveness of test case prioritization based on fault detection rate and show the
flexibility of the approach for application in different contexts. However, as
demonstrated in [10], no prioritization metric is the best one for any system:
indeed, the performance of the prioritization approach varies according to the
considered application and could depend on the evaluated test suites. An-
other proposal addresses time-constrained test prioritization in the context
of integer programming [11].

An approach that is currently considered very promising is based on the
notion of test similarity, e.g., [12]: the intuition behind similarity-based pri-
oritization is that when resources are limited and only a subset of test cases
within a large test suite can be executed, then it is convenient to start from
those that are the most dissimilar according to a predefined distance function.

In this paper, we propose to adapt similarity-based prioritization to order
XACML test cases. To do this, we need to capture and specify what is a
suitable notion of distance between XACML requests. To the best of our
knowledge, our approach is the first attempt to introduce a prioritization
strategy in XACML access control systems. The approach has been imple-
mented into a tool called SIMTAC (SIMilarity Testing for Access-Control)
that is publicly available for download !.

To evaluate the proposed prioritization strategy for the testing of XACML
access control systems, we consider the fault detection rate criterion. In
particular, we rely on mutation analysis to inject faults into the XACML
policy, and challenge the ordered tests to detect the faults seeded in the
policy itself. The goal is to end up with XACML tests ordered in a way that
enables to quickly reach a high mutation score.

The contributions of this paper include:

e the introduction of the first test prioritization technique for XACML
access control systems;

e the definition of two XACML similarity metrics, a simple one indepen-

LA release of the SIMTAC tool is available at http://labse.isti.cnr.it/tools/
simtac.

dent of the XACML policy, and another exploiting the XACML policy
specification;

e an empirical study that compares different alternative techniques to
prioritize XACML requests (on six policies of various complexity) for
assessing our proposed technique.

The remainder of this paper is organized as follows. Section 2 introduces
the XACML language and how XACML test cases are generated. Section
3 motivates this work while Section 4 presents our new test similarity-based
prioritization approach. Then, Section 5 shows the empirical evaluation of
the proposed approach, followed by Section 6 that discusses threats to valid-
ity. Finally, Section 7 presents the related work and Section 8 concludes the
paper, also hinting at future work.

2. Background

This section introduces the background behind the proposed approach.
Specifically, we first present the XACML language and an XACML policy
example. Then we focus on XACML requests generation and provide a short
description of a combinatorial testing strategy used for deriving the test suites
adopted in the empirical validation.

2.1. XACML Language

XACML [3] is a de-facto standardized specification language that defines
access control policies and access control decision requests/responses in an
XML format. An XACML policy defines the access control requirements of
a protected system. An access control request aims at accessing a protected
resource in a given system whose access is regulated by a security policy. The
request is evaluated against the policy and the access is granted or denied.

The main components of an access control systems architecture are the
Policy Enforcement Point (PEP) and the Policy Decision Point (PDP). A
PEP intercepts a user’s request, transforms it into an XACML format and
transmits it to the PDP. As showed in Figure 1, the PDP evaluates the
request against the XACML policy and returns the access response (Per-
mit/Deny/NotApplicable/Indeterminate).

In a simplified vision an XACML policy has a hierarchical structure:
at the top level there is the policy set, which can contain in turn one (or
more) policy set(s) or policy elements. A policy set (a policy) consists of a

4

XACML

policy
|
XACML |I_,
Request
Test Suite Test Results

Figure 1: XACML policy evaluation

target, a set of rules and a rule combining algorithm. The target specifies
the subjects, resources, actions and environments on which a policy can be
applied. If a request satisfies the target of the policy set (policy), then the
set of rules of the policy set (policy) is checked, else the policy set (policy) is
skipped. A rule is composed by: a target, which specifies the constraints of
the request that are applicable to the rule; a condition, which is a boolean
function evaluated when the request is applicable to the rule. If the condition
is evaluated to true, the result of the rule evaluation is the rule effect (Permit
or Deny), otherwise a NotApplicable result is given. If an error occurs during
the application of a request to the policy, Indeterminate is returned. The
rule combining algorithm specifies the approach to be adopted to compute
the decision result of a policy when more than one rule may be applicable to
a given request. For instance, the permit-overrides algorithm specifies that
Permit takes the precedence regardless of the result of evaluating any of the
other rules in the combination, then it returns Permit if there is a rule that is
evaluated to Permit, otherwise it returns Deny if there is at least a rule that
is evaluated to Deny and all other rules are evaluated to NotApplicable. If
there is an error in the evaluation of a rule with Permit effect and the other
policy rules with Permit effect are not applicable, the Indeterminate result is
given. The access decision is given by considering all attribute and element
values describing the subject, resource, action and environment of an access
request and comparing them with the attribute and element values of the
policy.

Listing 1 illustrates an XACML policy with two rules. The first rule (lines
33-67) states that a student can borrow and return books from the library.
The second rule (lines 68-96) states that a professor is authorized to buy

© OO U A WN -

books for the library.

An XACML request is composed of four elements: a subject, a resource,
an action and an environment. The values and types of these four elements
should be among the values and types defined by the policy rules or tar-
gets. Testing an XACML policy involves generating a set of requests to be
evaluated based on the policy. The responses to these requests are then
checked against the expected decisions. The next section presents a strategy
for automatically generating the XACML requests.

2.2. Test cases generation

A critical issue in testing XACML access control systems is the generation
of an effective test suite.

<PolicySet xmlns="xacml:2.0:policy:schema:os”
xmlns:xsi="http://www.w3.o0org /2001 /XMLSchema—instance”
PolicyCombiningAlgld=" first —applicable” PolicySetId="LibrarySet”>
<!— THE POLICY SET TARGET >

<Target>
<Resources>
<Resource>
<ResourceMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string—equal”>
<AttributeValue DataType="string”>Book</AttributeValue>
<ResourceAttributeDesignator Attributeld="resource—id” DataType="string” />
</ResourceMatch>
</Resource>
</Resources>
</Target>
<Policy Policyld=”Library” RuleCombiningAlgld="first —applicable”>

Ll=— THE POLICY TARGET =

<Target>
<Subjects>
<Subject>
<SubjectMatch MatchIld=" urn:oasis:names:tc:xacml:1.0:function:string—equal”>
<AttributeValue DataType="string”’>Student</AttributeValue>
<SubjectAttributeDesignator Attributeld="subject—id” DataType="string” />
</SubjectMatch>
</Subject>
</Subjects>
</Target>

<!— THE POLICY RULES —>
<Rule Effect="Permit” Ruleld="Rulel”>
<!— RULE 1 TARGET: SUBJECTS, RESOURCES AND ACTIONS —>

<Target>
<Subjects> <Subject>
<SubjectMatch Matchld=" urn:oasis:names:tc:xacml:1.0:function:string —equal”>
<AttributeValue DataType="string”>Student</AttributeValue>
<SubjectAttributeDesignator Attributeld="subject—id” DataType="string” />
</SubjectMatch>
</Subject>
</Subjects>
<Resources><Resource>
<ResourceMatch
MatchId=" urn:oasis:names:tc:xacml:1.0:function:string —equal”>
<AttributeValue DataType="string”>Book</AttributeValue>
<ResourceAttributeDesignator Attributeld="resource—id” DataType="string” />
</ResourceMatch>
</Resource>
</Resources>

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

<Actions><Action>
<ActionMatch Matchld=" urn:oasis:names:tc:xacml:1.0:function:string —equal”>
<AttributeValue DataType="string”>Borrow</AttributeValue>
<ActionAttributeDesignator Attributeld="action—id” DataType="string” />
</ActionMatch>
</Action>
<Action>
<ActionMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string —equal”>
<AttributeValue DataType="string”’>Return</AttributeValue>
<ActionAttributeDesignator Attributeld="action—id” DataType="string” />
</ActionMatch>
</Action>
</Actions>
</Target>
</Rule>
<Rule Effect="Permit” Ruleld="Rule2”>

<!— RULE 2 TARGET: SUBJECTS, RESOURCES AND ACTIONS —>

<Target>
<Subjects><Subject>
<SubjectMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string —equal”>
<AttributeValue DataType="string”>Professor</AttributeValue>
<SubjectAttributeDesignator Attributeld="subject—id” DataType="string” />
</SubjectMatch>
</Subject>
</Subjects>
<Resources><Resource>
<ResourceMatch
Matchld=" urn:oasis:names:tc:xacml:1.0:function:string —equal”>
<AttributeValue DataType="string”>Book</AttributeValue>
<ResourceAttributeDesignator Attributeld="resource—id” DataType="string” />
</ResourceMatch>
</Resource>
</Resources>
<Actions> <Action>
<ActionMatch Matchld=" urn:oasis:names:tc:xacml:1.0:function:string —equal”>
<AttributeValue DataType="string”>Buy</AttributeValue>
<ActionAttributeDesignator Attributeld="action—id” DataType="string” />
</ActionMatch>
</Action>
</Actions>
</Target>
</Rule>
</Policy>
</PolicySet>

Listing 1: XACML Policy Example

Listing 2 presents an example of an XACML request of a student asking
to borrow a book from the library. In detail the request contains one subject
attribute (Student), one action attribute (Borrow) and one resource attribute
(Book). If this request is evaluated considering the XACML policy of Listing
1, a Permit decision is returned allowing the access. Specifically, this request
will be first evaluated against the target of the policy set (line 6-15): it
will be applicable to this target since it matches the resource Book; then
it will be evaluated against the target of the policy (line 20-29): it will be
applicable to this target since it matches the subject Student; finally it will
be evaluated against the rules Rulel (line 33-67) and Rule2 (line 68-96): it
will be applicable to Rulel since it matches the subject Student, the resource
Book and one of the two actions specified in that rule (the Borrow action),
whereas it will be not applicable to the rule Rule2 since it does not match the

© WU A WN -

subject and action of this rule. Because the defined algorithm in the policy
is first-applicable, the effect of the first rule, i.e., Permit will be returned.

<?xml version="1.0” encoding="UTF-8"7>
<Request>
<Subject>
<Attribute Attributeld="subject—id” DataType="XMLSchema#string”>
<AttributeValue>Student</AttributeValue>
</Attribute>
</Subject>
<Resource>
<Attribute Attributeld="resource—id”
DataType="XMLSchema#string”>
<AttributeValue>Book</AttributeValue>
</Attribute>
</Resource>
<Action>
<Attribute Attributeld="action—id”
DataType="XMLSchema#string”>
<AttributeValue>Borrow</AttributeValue>
</Attribute>
</Action>
<Environment />
</Request>

Listing 2: XACML Request Example

Several common approaches for generating XACML requests are based
on combinatorial strategies, as surveyed in Section 7. In this paper, among
the tools available for test cases generation we refer to X-CREATE [13, 5, 14]
2. In particular, we use the Simple Combinatorial test strategy implemented
in this tool for deriving the test suites used to empirically validate the effec-
tiveness of the proposed XACML prioritization approach.

The Stmple combinatorial strategy applies a combinatorial approach to
the policy values. Specifically, four data sets called SubjectSet, ResourceSet,
ActionSet and EnvironmentSet are defined. These sets are filled with the
values and the attributes of the policy elements <Subjects>, <Resources>,
<Actions> and <Environments>, respectively. The elements and attributes
values in each set are then combined in order to obtain the entities. Specif-
ically, a subject entity is defined as a combination of the values of elements
and attributes of the SubjectSet set. Similarly the resource entity, the action
entity and the environment entity represent combinations of the values of the
elements and attributes of the ResourceSet, ActionSet, and EnvironmentSet
respectively.

Then, an ordered set of combinations of subject entities, resource entities,
action entities and environment entities is generated in the following way:

2A release of the X-CREATE tool is available from http://labse.isti.cnr.it/
tools/xcreate.

e First, pair-wise combinations are generated to obtain the PW set
e Then, three-wise combinations are generated to obtain the T'W set
e Finally, four-wise combinations are generated to obtain the FIW set

These sets have the following inclusion propriety PW C TW C FW.
Thus, the maximum number of requests derived by this strategy is equal
to the cardinality of the FIW set. The X-CREATE framework provides an
ordered set of requests guaranteeing a coverage first of all pairs, then of all
triples and finally of all quadruples of values entities derived by the policy.
Since the Simple combinatorial strategy relies only on the values entities
specified in the policy, the derived test suite can be used for testing either
the policy or the PDP. More details about this strategy are in [5].

3. Motivation

It is a shared understanding in testing environments that automated sup-
port tools for test cases generation and execution can drastically reduce the
huge time and effort usually required for these activities. However, the ac-
tivity of checking the testing outcomes remains largely a manual task and
can become the bottleneck of the overall testing process. In fact, deciding
whether each test result is correct or not can be a budget-consuming activity,
especially when a (possibly large) number of tests is automatically executed.

During the TAS3 [1] project, we performed an experiment that aimed at
evaluating the impact of test activities inside the development of a commer-
cial access control system. We found that automatic test requests generation
and execution required only 0.02% of the overall testing time, and that the
(manual) analysis of test results took the remaining 99.98% [14]. Thus an
emerging challenge is to provide applicable and efficient proposals to reduce
the effort needed during the manual check of the test outputs.

In software testing, solutions to reduce the cost of verdict analysis include
either the development and adoption of automatic mechanisms (usually called
the test oracles), or the application of proper strategies for test cases selection
[15, 16] or prioritization [12].

To the best of our knowledge, in the context of access control systems the
only available proposal to automatically check whether the test outputs are
correct, is provided in [17]. This work proposes to simultaneously observe
the responses from different PDPs on the same test inputs, so that different

responses can highlight possible issues. Although effective, the proposal is
quite demanding, because it requires using different PDP implementations.
The cost and effort necessary for the approach may prevent its applicability
in a commercial settings.

In test case selection, the aim is to reduce the cardinality of the test suites
while keeping the same effectiveness in terms of coverage or fault detection
rate; in test case prioritization, the aim is to order the test cases so that those
having the highest priority can be executed first. In this paper, we take the
latter direction by performing XACML requests prioritization.

In our previously mentioned experiment [14], we learned several lessons
for improving the test suite effectiveness and reducing the cost of verdict
analysis. First, it is evident that only those requests that are applicable to
a policy (namely those that contain values matching the target of the policy
set, the target of the policy and the target of the rule) will trigger the rule
decision and hence facilitate the identification of possible access problems
related to the policy. This evidence has been used for the ad-hoc selection of
the test cases. Then, the execution of such selected test cases and the analysis
of the obtained results highlighted that: i) the effectiveness of the reduced
test suites in terms of verdict coverage was preserved; i) the cardinality of
the reduced test suites for some policies was drastically decreased; i) the
analysis time of the verdicts of all reduced test suites was reduced of the
95%.

On the basis of the above experience, we reached the conclusion that
only specific test case selection criteria taking into account the policy values
and the request applicability to the XACML policy, represent feasible and
effective solutions for testing access control systems.

In this paper we employ this lesson, learned in the context of XACML
test case selection, for prioritization and present an approach, implemented
into the SIMTAC tool, taking into account the applicability of the request to
the policy. More specifically we propose an XACML test case prioritization
approach based on similarity, using two different metrics:) a standard simi-
larity metric applied to XACML test suites (we call it simple similarity), and
i1) a more specific similarity metric for the prioritization of test cases within
an XACML test suite (we call it XACML similarity). In particular the latter
implements the previously mentioned recommendation, by prioritizing those
requests triggering the rule decision of an XACML policy.

10

4. Similarity Metrics

Similarity is a heuristic that is used here to order access control requests,
i.e., the test cases. Previous work on model-based testing, such as [18], has
shown that dissimilar test cases bestow a higher fault detection power than
similar ones. Analogously, the experiment results presented in this paper
(see Section 5) show that two dissimilar access control requests are likely to
find more access control faults than two similar ones.

In the following, we consider a test suite of r access control requests
{Ry, ..., R.}. A similarity-based prioritization approach consists of two steps.
The first step involves the definition of a distance metric d between any two
access control requests R; and R;, where 1 < 4,7 < r. This metric is used to
evaluate the degree of similarity between two given requests: the highest the
resulting distance, the most different the two requests. The second step is
the ordering of these r requests. To this end, we first compute the distance
between each pair of requests. Then, a prioritization algorithm uses the
computed distances to select the most dissimilar requests, resulting in a list
where the first selected requests are the most dissimilar ones. In Sections
4.1, 4.2 and 4.3 we introduce the similarity distances proposed in this paper
(step 1), whereas in Section 4.4 we show the prioritization algorithm (step
2).

4.1. Distance Metrics between Access Control Requests

We present two methods for calculating a distance metric d between any
two access control requests. The former, called the simple similarity, is based
on the lexical distance of the requests parameters (subject, resource, action,
environment). In this case the distance dss can be generally defined as follows:

Ao - Rx R — {0,1,2,3,4}
58 (RHRJ) — dss(Ri, R])

The latter, called the XACML similarity, takes into account the requests
attributes values (as the simple similarity) and the XACML policy. The idea
is to go through all levels of a policy, from the policy set target to the rules
targets, and compare the request attributes values with the targets values at
each level.

The comparison between an XACML request and an XACML policy is
performed following a relation called here Applicability. Specifically, if the

11

parsing
attributes

computing simple dy(R; ,R)

similarity

Ri, R;

Figure 2: Main steps for computing similarity metrics

request matches a target at some level (policy set, policy or rule), then it is
considered to be applicable.

For the XACML similarity, the distance d,s between requests is policy-
dependent and can be generally defined as follows:

RxRxXP — R,

dms: (Rz,RJ,XPk) — dms(Ri7Rj,XPk) ’

For both simple similarity and XACML similarity, we adopt the conven-
tion that the higher is the resulting distance value, the more dissimilar are
the two requests, with a distance value equal to 0 meaning that two requests
are identical.

Figure 2 outlines the main steps for computing the two distance metrics
given two requests R; and R; belonging to a test suite of access control
requests { Ry, ..., R, }.

As shown in Figure 2 (light gray part), the simple similarity distance
dss(R;, Rj) is derived by parsing each pair of requests (R;, R;), where 1 <
i,j < r, so as to extract their attributes values {subject, resource, action
and environment}.

12

These values are represented in Figure 2 by the vectors called (Vg,, Vk;),
where 1 < 4,5 <r. The similarity distance dg(R;, R;) is computed by com-
paring the vectors (Vg,, Vg;) and counting the number of attributes having
different values in the two vectors.

As an example we consider the attribute values of a set of six requests
Ry, Ry, ..., Rg obtained by the application of the Simple Combinatorial
Strategy described in Section 2.2 to the policy of Listing 1.

e Ry = {Student, Book, Buy, null},

Ry = {Professor, Book, Borrow,null},

R3 = {Student, Book, Return,null},

Ry = {Professor, Book, Return, null},

Rs = {Professor, Book, Buy, null},
e R¢ = {Student, Book, Borrow,null}.

For instance, dy(Ry, R3) = 1 and dg(R3, Rg) = 1 since only the action
attribute is different in the two requests, while dy (R, Re) = 2 since both the
subject and the action differ in Ry and R,. More details about the simple
similarity distance are provided in Section 4.2.

The XACML similarity distance dus(R;, Rj, XP), of each couple of re-
quests {R;, R;}, where 1 <, <, is a policy-dependent measure that uses
three different values: i) the simple similarity distance dy(R;, R;); ii) the
Applicability value of the couple (R;, R;) to the policy XP; and iii) the value
of a priority relation of R; and R;.

The computation of the Applicability value of a couple (R;, R;) to the
policy XP includes two steps:

1. the derivation of the applicability degrees of each request to the XACML
policy;
2. the summing up of the applicability degrees of the couple (R;, R;).

Precisely, for each request R;, where 1 < ¢ < r, five degrees of applica-
bility are considered: rule applicability (ruad): for each rule of the policy,
it represents the degree to which the request can satisfy first the targets of
the policy sets and the policy which the rule belongs to, and then the tar-
get of the rule itself; subject applicability (sad) [resource applicability (rad),

13

action applicability (aad), environment applicability (ead) respectively]: it
represents the degree to which the subject [resource, action, environment| of
the request can match first the subjects [resources, actions, environments|
of the targets of the policy sets and the target of the policy which the rule
belongs to, and then the target of the rule itself.

For instance, considering the XACML request R3 and the rule Rulel of
Listing 1 (line 33-67), the five applicability degrees of R3 to the rule Rulel
are as follows:

(ruad, sad, rad, aad, ead) = (1, 1, 1, %, 0)

Specifically, the ruad value is 1 because the request R3 exactly matches
the target of the policy set, that of the policy and that of the rule Rulel;
sad is 1 because the subject of Rs, i.e., Student exactly matches the subject
of the target of the policy set, that of the policy and that of the rule Rulel;
similarly rad is 1 because the resource of Rj3, i.e., Book exactly matches the
resource of the target of the policy set, that of the policy and that of the rule
Rulel; aad is % since the action of Rs, i.e., Return matches only one of the
two actions of the target of the rule Rulel, i.e., Borrow and Return and the
target of the policy set and that of the policy do not contain action values.
Finally, ead is 0 since R3 does not specify any environment value.

As shown in Figure 2 (dark gray part), for each request R;, the first step
of the computation of the applicability values provides a 5 X n matrix (where
n is the cardinality of the XACML policy rules), Applicability Matrix, of the
request R; (AMpg,). Each column h of the matrix AMp, contains the ruad,
sad, rad, aad, ead values that refer to the h-th rule of the policy P.

For instance the applicability matrix of the request R3 to the rules of the
policy of Listings 1 is:

o O O
—_
)

AMp, =

Ol= = =

S
o

0.0

where the first column is the applicability vector of R3 to rule Rulel
described above, whereas the second one is the applicability vector of R3 to
rule Rule2.

Similarly, the applicability matrix of the request Rg to the rules of the
same policy is:

14

o O O
—_
(@]

AMp, =

ONI= = =

.0 0.0

The second step in the computation of the Applicability value consists in
summing up the applicability degrees of each couple of matrices (AMpg,, AMg,),
where 1 <, j <. In Figure 2 the result of this sum is called appV alue(R;, R;).

For instance the applicability value of (AMg,, AMg,) is 6.17 + 6.17 =
12.34 where 6.17 and 6.17 are the sum of all the values of AMpg, and AMpg,,
respectively.

The third value used in the computation of the XACML similarity dis-
tance dys(R;, Rj, XP) is represented by the priority of each pair of access
control requests. The priority value for the couple (R;, R;) is computed ac-
cording to the applicability of the requests to the XACML policy and can be
equal to 3, 2, 1, 0. This priority value will be equal to: 3 when both requests
are applicable to at least a rule, 0 when both requests are not applicable to
any rule. The aim is to give higher priority to those couples of requests able
to trigger the Effect (Permit or Deny) of the rules.

As in Figure 2, the computation of the priority value (called priority(R;, R;))
is performed by analyzing each couple of matrices (AMpg,, AMg;). For in-
stance, considering the above presented matrices AMp, and AMpg,, the pri-
ority value associated to the pair of requests (R3, Rg) is 3 since both requests
are applicable to the rule Rulel.

The XACML similarity distance d,s(R;, R;, X P) is finally computed by
summing the three obtained values (dss(R;, R;), appValue(R;, R;), priority(R;, R;)).

For instance the XACML similarity distance between the requests Rj
and Rg is 1 4+ 12.34 + 3 = 16.34 where 1 is the simple similarity distance
between R3 and Rg, 12.34 is the applicability value and 3 is the priority value
computed as before.

In the following sections details about the computation of the two distance
measures are provided.

4.2. Simple Similarity

Given two requests (R;, R;), the simple similarity d,s(R;, R;) is defined
based on a comparison between the request attributes values. There are four
attributes in each request: {subject, action, resource and environment}.

15

For each attribute, the simple similarity compares the values in the two
requests (R;, R;). The distance increases each time a given attribute has
different values in the two requests. Since the evaluation is based on four
attributes, the final distance varies between 0 and 4. Formally, the simple
similarity is defined as follows:

ss Rm R Z dattmbute Ri? RJ)

where

1 R;.attributelk] # Rj;.attribute[k]
dattmbute(RH R;) { 0 otherwise ’ :

The similarity distance values relative to a set of requests { Ry, ..., R,.} are
represented by a r X r matrix, called the Simple Similarity Matrix (SSM)

SSM: (RxR) — {0,1,2,3,4}

defined as:
[SSM]ZJ = dss(RiaRj) 1,] =12, ..., randi < j .
Considering the six requests Ri, Rs, ..., Rg presented in the previous

section, the SSM matrix is

Rl R2 Rg R4 R5 RG

Rijo0 2 1 2 1 1
Ry 0 0 2 1 1 1
oy~ Rsl0 0 0 1 2 1
Ry0 0 0 0 1 2
Rs {0 0 0 0 0 2
Rg {0 0 0 0 0 0

16

4.8. XACML Similarity

In this section, we first provide some definitions about the applicability of
a couple of requests to an XACML policy (Section 4.3.1), then we present the
priority relation (Section 4.3.2), and finally we formally define the XACML
similarity distance (Section 4.3.3).

4.3.1. Applicability Definitions

Applicability is a relation between an XACML request and an XACML
policy. We introduce first the Applicability Degree, which represents the
percentage of a rule that is satisfied by a request. For each request the Ap-
plicability Degree values associated to the whole set of rules are collected into
a matrix called the Applicability Matriz (Definition 1). This matrix summa-
rizes the applicability of the request to the XACML policy. In particular, the
sum of the elements of the Applicability Matriz provides the Request Appli-
cability Value, which is used for assessing the requests against each other in
terms of overall applicability to the policy. Then, for each couple of requests,
we compute their Applicability Value, calculated as the sum of their respec-
tive Request Applicability Values, which represents the overall applicability
degree of a couple of requests to the XACML policy.

As already introduced in Section 4.1, for each request R;, where 1 < i < r,
five degrees of applicability are considered: rule applicability (ruad); subject
applicability (sad); resource applicability (rad); action applicability (aad),
environment applicability (ead). These five values are represented into a
Column Vector of length 5 called Applicability Degree, ADgy, defined as
follows:

ruadpy
sadRU
ADRU = T(ldRU
CLCLdRU
eadRU

For instance, considering the XACML request R3 and the rule Rulel
of Listing 1 (line 33-67), the Applicability Degree of R3 to the rule Rulel,
as already explained in Section 4.1, can be shown by the following Column
vector:

17

ADRURulel =

ONI- = =

To each request we associate a 5 x n matrix, where n is cardinality of the
XACML policy rules, called Applicability Matrix of the request R; (AMg,).
Each column £ of the matrix AMpg, contains the ruady, sady, rady, aady,
eady, values that refer to the k-th rule of the XACML policy XP.

Definition 1 (Applicability Matrix). Given a request R and a set of n
element Rules {RU;}, where i = 1, ..., n, the Applicability Matriz of R,
called AMEg, is a 5 x n matriz defined as:

AMR = |: ADRUl A.DRU2 ADRUn] .

Considering the set of XACML requests introduced in Section 4.1, { Ry,
Ry, ..., Rg}, and according to Definition 1, we have the following Applica-
bility Matrices:

[2 2 [1 Lo (1.0 2 7
3 3 3 3 : 3
1.0 1.0 0.0 0.0 1.0 1.0
AMp, = | 1.0 1.0 | AMg, = | 1.0 1.0 | AMg = | 1.0 10
0.0 0.0 0.0 0.0 100
| 0.0 0.0 | | 0.0 0.0 | | 0.0 0.0
R R U
0.0 0.0 0.0 0.0 1.0 1.0
AMp, = | 1.0 1.0 | AMg, = | 1.0 1.0 | AMg, = | 1.0 10
0.0 0.0 0.0 0.0 100
| 0.0 0.0 | 0.0 0.0 | 0.0 0.0

Definition 2 (Request Applicability Value). Given an XACML request
R, and its 5 x n Applicability Matrizc AMp, the Request Applicability Value
associated to R, called RAR is defined as:

RAp = i i[AMR]h,k.

h=1 k=1

18

Definition 3 (Applicability Value). Given a couple of requests (R;, R;)
and their Request Applicability Values RAR,, RARg,, the Applicability Value
associated to the couple of requests, called AppValue(R;, R;) is defined as:

AppValue(R;, Rj) = RAR, + RAR,.

Considering the XACML requests, R; and Rj3, their Applicability Matri-
ces AMp,, AMpg,, and according to Definition 2, the Request Applicability
Value associated to R is

5 2
RAp, =) > [AMpg,|ni = 5.33

h=1 k=1

while the Request Applicability Value associated to Rj3 is

5 2
RAp, = Y [AMp,|ni = 6.17

h=1 k=1

Hence, according to Definition 3, the Applicability Value associated to (Ry, R3)
is:

AppValue(Ry, R3) = RAR, + RAg, = 11.5

4.83.2. Priority Definition

The Priority Value (Definition 4) establishes the priority degree of a cou-
ple of requests. This Priority Value is computed considering the combined
Applicability Degree of both requests to the policy. Depending on how the
respective applicabilities combine, it can take four values (generically rep-
resented by «a, (5, v, d). Specifically, it yields the highest value when both
requests trigger the effect of at least a rule. This value is decreased when
only one request can trigger the effect of at least a rule, and further if none
of the two requests can trigger the effect of a rule. From an empirical exper-
imentation on a set of six policies described in Section 5.1, we observed that
the best values for «, 3, 7, 0 are 3, 2, 1, 0 respectively. We cannot exclude
though that different values of «;, 3, v, d could perform better for a different
set of policies.

Definition 4 (Priority Value). Given a set of XACML requests, { Ry, Ra,
..., R.}, and the set of their 5xn Applicability Matrices { AMpg,, AMg,, ...,

19

AMpg, }, the Priority Value associated to a pair of requests (R;, R;), where
1 <i,j <r andi#j, called PriorityValue(R;, R;)

PriorityValue(R;, Rj) : (RxR) — {a, B3, v, 0}

1s defined as:

(« Zf [AMRi]l,h:[AMRj]l,kzl Hh, ks.t.Ogh,k<n
15} if [AMR,L]l)hzl A 0< [AMRj]l,k<1 dhst.0<h<n,
Vkst. 0<k<n
OR
PriorityValue(R;, R;j) = 0<[AMp)1p <1 A [AMg,]1x =1 Vhst. 0 < h<n,
dkst.0<k<n
Y lf 0< [AMRi]l,ha [AMRj]l,k <1 \V/h,k‘ s.t.0< h,k‘ <n
L 0 otherwise

According with Definition 4, the requests R; and Rs3, and their Applica-
bility Matrices, AMpg,, AMg,, the Priority Value associated to the pair of
requests (Ry, R3) is PriorityValue(Ry, R3) = 2 since [AMpg, |11 = [AMpg,]12
= % S 1 and [AMRg]l,l =1

Otherwise considering also the request Rg we have: PriorityValue(R3,
Rg) = 3 since [AMpg,]11 = [AMpg,11 = 1.

4.8.8. XACML Similarity Definition

In this section, we formally specify the XACML similarity (Definition 5)
representing the distance between a pair of requests. Specifically, given two
requests (R;, R;), the XACML similarity distance d,s (R;, R;) is defined as
the sum of the simple similarity distance, the Applicability Value and the
Priority Value associated to the pair of requests (R;, R;).

In particular, if the two requests are identical, namely their simple sim-
ilarity is equal to zero, then the XACML similarity distance is also set to
Zero.

Definition 5 (XACML Similarity Distance). Given a set of XACML
requests, {R1, Rs, ..., R.} and an XACML Policy XP, the XACML Sim-
ilarity Distance between a pair of requests (R;, R;), where 1 < i,j < r and
i # j, called dys(R;, Rj, X P), is defined as:

20

dys(Ri, Rj, XP) =

0 if dss(Ri, R;) =0

dss(Ri7 Rj) +
AppValue(R;, R;) +

PriorityValue(R;, R;) otherwise

Using Definition 5 we define the XACML Similarity Matrix (XSM), in
which the entry in the i-th row and j-th column with ¢ < j represents the
XACML Similarity Distance between the pair of XACML Requests R;, R;.
Formally, given an XACML Policy XP and given a set of XACML requests

{R1, Rs, ..., R}, the corresponding XACML Similarity Matrix is defined
as:
Ry Ry R,._4 R,
Rl 0 dxs(RlaR%Xp) dxs(RlaerlaXp) dxs<RlaRT7XP)
Ry 0 dys(Ro, R, X P)
XSM = : : :
Rr—l 0 dms(Rr—la Rra XP)
R, 0 0 0 0

For instance, considering the XACML policy of Listing 1 and the set of

XACML requests introduced in Section 4.1, {R;, Rs, ..

sponding XACML Similarity Matrix is the following:

Ry
Ry 0.0
Ry 0.0
s — Bs |00
Ry 0.0
Rs 0.0
Rs 0.0

Ry Rj Ry Rs

11.0 145 11.0 10.0
0.0 1284 735 7.35
0.0 0.0 11.84 12.84
0.0 0.0 0.0 7.35
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

21

Rg

14.5
11.84
16.34
12.84
12.84
0.0

., Rg}, the corre-

where for instance, according to Definition 5, the XACML Similarity Distance
between the pair of XACML Requests (R, R3) is represented by the following
element of XSM:

[XSM]Rl,Rs - dxs(Rla R37XP>
= dss(Ry1, R3) + AppValue(Ry, R3) + PriorityV alue(Ry, R3)
= 1+11.5+2 =145

4.4. Ordering the Access Control Requests

This section presents the algorithm used for the prioritization of the re-
quests, which can be applied to both distance metrics defined in the previous
sections. The idea is to order the requests so that the first executed are
those most dissimilar, i.e., the requests sharing the highest distance. To pri-
oritize the XACML requests we adapt the technique proposed in [19]. The
procedure steps are outlined in Algorithm 1 below.

Algorithm 1 Prioritization

. input: S = {Ry, ..., R, }, distMatrix
output: L > Prioritized list of n XACML requests
L1
Select R;, R; where max (distMatriz(R;, R;)), 1 <i,j <n
> Take the first ones in case of equality

Ladd(RZ)
Ladd(R])
while #S > 0 do
s« size(L)
Select R, € S where max (25—1 distMatriz(R;, L.get(j)) 1<i<n

> Take the first one in case of equality

—_ =
—_

—_ =

L.add(R;)

S« S\{Ri} > Remove R; from S
: end while

: return L

— = =
o Gl

Informally, the algorithm selects the request that is the most distant from
all the requests already selected during the previous steps of the approach. It
takes as input the set of XACML request S = {Ry, ..., R,,} and a distance ma-
trix (distMatrix), which can be either the SSM matrix or the XSM matrix
defined in the previous sections. Using the distances between the requests
collected into the matrix, it first selects the two XACML requests having

22

the highest distance (Algorithm 1, line 4). In case of equality the first pair
of requests is selected. Then these two requests are removed from the set of
XACML requests to be prioritized, i.e., the set S (Algorithm 1, line 8). In the
next step, the algorithm considers among the remaining XACML requests
the one yielding the maximum sum of the distances from all the already se-
lected requests (Algorithm 1, line 11). In case of equality, the first request is
selected. Then, the selected request is removed from the XACML requests
to be prioritized (Algorithm 1, line 14). The process is repeated until all
requests are selected.

Considering for instance the SSM matrix at the end of Section 4.2 accord-
ing to Algorithm 1 (line 4), the pair (R, Ry) is selected because this is the
first pair having the maximum distance equal to 2 (SSM(1,2) = 2). For the
remaining set of requests { R3, Ry, R5, Rg} the sum of the distances between
each of them and the requests R; and Rs is computed. Then the request
having the maximum sum is selected (Algorithm 1, line 9-15). Specifically:

o for Ry: SSM(1,3) +SSM(2,3) =1+2=3

o for Ry: SSM(1,4) + SSM(2,4) =2+1=3

.) (2,5)=1+1=2
)

(
for Rs: SSM(1,5) 4+ SSM (2,5
(

for Rg: SSM(1,6) + SSM(2,6)=1+1=2

Thus the request Rj3 is selected because it is the first one having the
maximum sum (equal to 3). According to Algorithm 1 (line 9-15), the above
described steps are repeated for the set of remaining requests. Finally, the
obtained ordered set of requests is { Ry, Ry, R3, R4, R5, Rg}.

Applying Algorithm 1 to the XSM matrix presented at the end of Section
4.3.3, instead, the obtained final ordered set of requests is { R3, Rg, R1, Ra, R4, R5}.
It is worth noting that this prioritization algorithm belongs to the cate-
gory of prioritizations that do not rely on a feedback to adjust the selection
of test cases as it goes forth (they are also called “total” prioritizations as

opposed to the “additional” prioritizations that rely on a feedback).

5. Experiments

This section presents the experimental results obtained by applying the
proposed similarity-based prioritization metrics. Specifically, we used the
tool SIMTAC to evaluate the effectiveness of the simple similarity and XACML

23

similarity metrics when applied to the test suites related to a set of real-world
XACML policies. We aim at evaluating the effectiveness in terms of fault
detection rate of the two similarity-based prioritization metrics, by answering
to the following research questions:

RQ1: Similarity Effectiveness: can the similarity-based prioritization
techniques outperform other prioritization methods in terms of fault detec-
tion rate? In particular, we will assess whether the similarity-based prioriti-
zation techniques are more effective than prioritization based on a mutation-
based heuristic, or on a random selection, or on n-wise combinatorial ap-
proaches.

RQ2: Similarity Variability: is the effectiveness of a test suite prioritized
using similarity-based approaches influenced by its size? In other words, we
will assess whether the effectiveness in terms of fault detection of a test suite
prioritized using similarity-based approaches depends on the size of the test
suite.

By answering RQ1, we want to assess the effectiveness of similarity-based
prioritization techniques against: i) a mutation-based heuristic, which is able
to optimize the fault detection rate and therefore represents the upper bound
for the comparison; ii) random selection, which is commonly used as baseline
approach, and iii) n-wise combinatorial approaches, which represent a widely
adopted methodology for test cases derivation.

By answering RQ2, we want to show that the effectiveness of the proposed
prioritization approaches does not depend on the size of the initial test suite
of the X-CREATE tool. This experiment has been performed by using ten
test suites of various sizes randomly selected from the initial X-CREATE test
set.

To answer the first research question, we used the simple similarity and
the XACML similarity metrics for ordering the test suites related to six
XACML policies, and compared the effectiveness of the prioritized test suites
in terms of fault detection rate. For measuring the latter, a mutation ap-
proach specifically conceived for XACML language has been used for intro-
ducing faults in the six XACML policies and the prioritized test suites have
been run to asses their capability to detect the introduced faults. In this
paper for deriving a set of XACML mutants we have adopted the XACMUT
tool®. Specifically, Table 1 lists the XACMUT mutation operators.

3A release of the XACMUT tool is available at http://labse.isti.cnr.it/tools/

24

Table 1: Mutation Operators [20]

ID Description
PSTT Policy Set Target True
PSTF Policy Set Target False
PTT Policy Target True
PTF Policy Target False
RTT Rule Target True
RTF Rule Target False
RCT Rule Condition True
RCF Rule Condition False
CpPC Change Policy Combining Algorithm
CRC Change Rule Combining Algorithm
CRE Change Rule Effect
RPT (RTT) | Rule Type is replaced with another one
ANR Add a New Rule
RER Remove an Existing Rule
RUF RemoveUniquenessFunction
AUF AddUniquenessFunction
CNOF Change-N-OF-Function
CLF ChangeLogicalFunction
ANF AddNotFunction
RNF RemoveNotFunction
CCF ChangeComparisonFunction
FPR First the Rules having a Permit effect
FDR First the Rules having a Deny effect

As said, the fault detection rate of the prioritized test suites has been
compared with the ones obtained by: a greedy-optimal selection of test cases,
computed based on the mutation coverage, which was able to maximize the
fault detection rate (called mutation-based heuristic); a random selection of
test cases (called random order); and the default X-CREATE requests order
(see Section 2.2), which represents per se a possible prioritization technique
based on an n-wise combinatorial approach (called X-CREATE order) .

To address the second research question, we repeated the previously men-

xacmut.

25

Table 2: Description of the six policies

Policy Name | Rules | Subjects | Resources | Actions | Environments
ASMS 117 8 5 11 3
itrust 64 7 46 9 0
VMS 106 7 3 15 4
continue-a 298 16 29 4 0
LMS 42 8 3 10 3
pluto 21 4 90 1 0

tioned experiment considering several test suites of various sizes. In this ex-
periment the test suites have been derived by a random selection of a different
subset from the available requests set. The comparison between the different
prioritized subsets has been provided again in terms of fault detection rate.

In the rest of this section we first provide details about the six XACML
policies and the mutation approach used for introducing faults in them (Sec-
tion 5.1). Then we describe the experiments performed to reply to RQ1
(Section 5.2) and to RQ2 (Section 5.3).

5.1. Policies and Setup

Table 2 presents the sizes of the six XACML policies used in our ex-
periments in terms of the number of subjects, resources, actions and envi-
ronments in addition to the number of rules. Table 3 shows the structure
of these policies in terms of policy sets and policies. Some policies contain
several policy sets and the same rules appear in more than one policy.

With reference to this table, LMS is a Library Management System, VMS
is a Virtual Meeting System and ASMS is an Auction Sales Management
System. LMS, VMS, and ASMS are policies from three Java-based systems,
which were used previously in several research papers (for instance in [21]).
continue-a [22] is a policy that is used by the Continue application, a web-
based conference management tool. pluto policy is used by the ARCHON
system, a digital library management tool [23]. Finally, itrust policy is part
of the itrust system, a health-care management system [24].

As explained previously, we have compared the effectiveness of the pro-
posed similarity-based prioritization metrics (namely XACML similarity and
simple similarity) with those of three other prioritization approaches: the

26

Table 3: Structure of the six policies

Policy Name | 1 Policy sets | § Policies
ASMS 1 1

itrust 1 1

VMS 1 1
continue-a 111 266

LMS 1 1

pluto 1 1

random order, the mutation-based heuristic and the X-CREATE order. In
particular the random order is presented in Algorithm 2. For each randomly
selected request, we evaluated the number of killed mutants. To avoid exper-
imental bias, we performed the random algorithm 10 times and computed the
average number of killed mutants on the 10 runs. We executed the requests
with the original policy first and collected for each request the obtained re-
sponse. Then, we run these requests with all mutated policies and collected
the responses for each request. A given request kills a given mutant when
the obtained response from the mutant is different from the original policy
response.

The mutation-based heuristic is a nearly optimal algorithm since it orders
the requests according to the cumulative number of different mutants killed
by the requests. The algorithm used in this case is similar to Prioritization
Algorithm 1 (Section 4.4). Instead of using the distance to select the test
cases, it relies on the numbers of mutants killed by each request (the mutation
results) to order the requests. Therefore, this approach requires performing

Algorithm 2 Random Prioritization

input: S ={Ry,....,R,} > Unordered set of n XACML requests
output: L > Prioritized list of n XACML requests
Le|
while #S5 > 0 do
i < random(1,#5S) > Choose a random integer between 0 and #S
L.add(R;)
S+ S\ {R;} > Remove R; from S
end while
return L

27

7000

6000
5000
a
S 4000 }
5
=
=
& 3000
=
2000
mutation-based —a—
AACML similarity —»—
1000 14 simple similarity —a—
A-CREATE —+—

random —s—

0 200 400 600 800 1000 1200 1400 1600
AACML Requests

Figure 3: ASMS policy

the mutation analysis by running all requests on mutated policies to get
the mutation results. Then requests are ordered according to the numbers of
killed mutants per requests. For the sake of consistency, we decided to always
follow the alphabetical order when handling the XACML requests. The way
files are ordered by the Java virtual machine might change depending on the
underlying platform (windows, Linux etc.). In order to avoid any issue that
could occur when running our Java tool on Linux based systems, Windows
or MAC OS, we order files alphabetically before handling them.

Finally, the last prioritization approach that we consider is the default X-
CREATE order. We consider the order in which the requests are generated
by the X-CREATE tool, considered as a prioritization approach. This allows
for evaluating the effectiveness of our approach compared to the default order
of generation of requests.

5.2. Similarity Effectiveness Evaluation

In this section we discuss the results of the experiment performed to reply

to RQ1.
The results are depicted in a separate plot for each policy in the next

28

Killed Mutants

Killed Mutants

1400

1200

1000

800

600

400

200

12000

10000

8000

6000

4000

2000

mutation-based —a—

AACML similarity —»—
simple similarity —a—
A-CREATE ——
random —s—

400 600 800 1000 1200

200
AACML Requests
Figure 4: continue-a policy
mutation-based —a—
AACML similarity —»—
simple similarity —&—
A-CREATE —+—
random ——
300 600 900 1200 1500 1800 2100 2400 2700

AACML Requests

Figure 5: itrust policy

29

Killed Mutants

Killed Mutants

2500

2000

1500

1000

500 mutation-based —a—
AACML similarity —»—
simple similarity —a—
A-CREATE ——
0 random —s—
0 100 200 300 400 500 600
AACML Requests
Figure 6: LMS policy
16000 T T T T T T T T T T T
14000
12000
10000
8000
6000
4000 mutation-based —a—
AACML similarity —»—
2000 simple similarity —&—
A-CREATE —+—
0 random —%—

30

60 90 120 150 180 210 240 270 300 330

AACML Requests

Figure 7: pluto policy

30

6000

5000 ¢

4000 t

3000 +

Killed Mutants

2000 +

mutation-based —a—
1000 + AACML similarity —— |
simple similarity —a—
A-CREATE —+—
random —%—

0 100 200 300 400 500 600 700 800 900
AACML Requests

Figure 8: VMS policy

six figures. The plots illustrate the cumulative number of mutants killed by
each prioritized request set. They show the effectiveness of each approach,
especially how effective are the first requests in improving the overall number
of mutants killed. For instance, we can consider the first 200 requests and
compare the number of mutants killed by each prioritized request set. After
running the first 200 requests (out of the 1400 requests that are generated)
for the continue-a policy, we can clearly see that the requests obtained from
the XACML similarity prioritization are killing almost 1200 mutants (out of
the 1800 mutants), which represents 66% of mutation score, while the other
three approaches (X-CREATE, simple similarity and random prioritization)
enable killing 800, which represents about 44% of mutation score.

The results that we obtained for the six policies allow us to evaluate how
effective are the first tests. Specifically, the results presented in Table 4 show
that: 10% of the XACML similarity-based prioritized test suite guarantees
at least 50% of mutation score for 5 of the six policies (for pluto, it reaches
21%); 20% of the XACML similarity-based prioritized test suite guarantees
at least 60% of the mutation score for 5 of the six policies (for pluto, it reaches
41%); 30% of the XACML similarity-based prioritized test suite guarantees

31

at least 85% of the mutation score for 4 of the six policies (it reaches around
60% for pluto and itrust). It is out of the scope of the paper to provide a
general criterion to select the best subset of the overall prioritized test suite.
However, from the analysis of the above results, 20% of the test suite seems
to be a good cutoff point. More detailed results are included in the additional
material document, which show the numbers of mutants killed by first 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of the prioritized test suites for
all the presented prioritization criteria and policies.

To evaluate the performance of the presented prioritization approaches
we also computed the APFD metric that is commonly used in prioritization
research. It is defined as follows [25]:

n—1

APFD = i B + L

n xl 2n
where n is the number of test cases in the test suite T, [is the number
of faults, and Fj is the number of faults detected by at least one test case
among the first i test cases in 7. The results in Table 5 show the APFD
value of each proposed criterion for each of the six policies and confirm that
the XACML Similarity approach outperforms the other approaches (except
the mutation-based one).

To sum up, we can notice from the results that for all the policies the best
results are, as expected, obtained from the mutation-based prioritization.
Among the remaining prioritization approaches, there are three approaches
leading to almost similar results; the random, the X-CREATE and the simple
similarity. The plots also show that the XACML similarity outperforms these
three techniques. This result is obtained for all the six policies.

From these obtained results, we can draw the following conclusions:

e Effectiveness of the XACML similarity approach: We can notice clearly
that for all policies the XACML similarity provides always better re-
sults and is close to the nearly optimal solution (the mutation-based
prioritization results). This indicates that taking into account the pol-
icy is very useful when it comes to test prioritization.

e Lack of effectiveness of the simple similarity: The obtained results show
clearly that the simple similarity is providing poor prioritization results.
Ignoring the policy and relying only on the requests content to perform
similarity prioritization leads to poor results that are comparable to
the random prioritization results.

32

Table 4: Mutant-kill ratios achieved by ordered sub-sets of X-CREATE requests

5
E

ASMS

1 Policy

2 XACML Requests \ Killed Mutants

3 1760 6649

4 Mutation-based 100
5 | XACML similarity 99
6 Simple similarity 95
7 X-CREATE 96
8 Random 93
9 Policy

10 XACML Requests ‘ Killed Mutants

11 1392 1741

12 Mutation-based 100
13 | XACML similarity 100
14 | Simple similarity 95
15 X-CREATE 94
16 Random 96
17 Policy

18 XACML Requests [Killed Mutants

19 2835 11949

20 Mutation-based m

21 | XACML similarity

22 | Simple similarity

23 X-CREATE

24 Random

25 Policy

26

27

28 Mutation-based

29 | XACML similarity

30 | Simple similarity

31 X-CREATE

32 Random

33 Policy

34

35

36 Mutation-based

37 | XACML similarity

38 | Simple similarity

39 X-CREATE

40 Random

41 Policy

42

43

44 Mutation-based

45 | XACML similarity

46 | Simple similarity

A7 X-CREATE

48 Random

e X-CREATE results are similar to random prioritization results: Inter-

estingly, the six policies results demonstrate that the default order in
which the X-CREATE tool creates the requests is providing a mutation-
killing capability similar to the random one. This result is important
because it shows clearly that we need to apply other prioritization ap-
proaches (like similarity) because the default order in which requests

33

Table 5: APFD values for the six policies

Policy Name | mutation-based | XACML similarity | simple similarity | X-CREATE | random
ASMS 0,933 0,895 0,673 0,718 0,676
itrust 0,748 0,742 0,645 0,626 0,627
VMS 0,904 0,864 0,594 0,591 0,657
continue-a 0,962 0,856 0,728 0,659 0,715
LMS 0,923 0,902 0,695 0,716 0,708
pluto 0,747 0,741 0,565 0,563 0,558

are created leads to poor results.

As a summary, the experiments that we conducted clearly recommend
the use of the XACML similarity approach. It showed to be very effective
for all the six policies that we used and outperformed the other prioritization
approaches. In addition, the experiments confirm the need to use prioritiza-
tion because the default order (the X-CREATE prioritization) is providing
poor fault detection rate.

5.3. Influence of Test-suite Size

In this section we discuss the results of the experiment performed to reply
to RQ2. We assess whether the effectiveness, measured in terms of fault
detection rate of the prioritized test suites, depends on the size of the test
suite. In the previous section, we showed that all the studied prioritization
approaches, except of the XACML similarity, did not provide good mutation
results when compared to the mutation-based prioritization. Therefore, here
we only consider the XACML similarity.

For each of the six XACML policies of Section 5.1, different test suites
of various sizes were selected at random from the set of requests (called here
initial test population) generated by the X-CREATE tool. In particular,
ten sets of size ratios 10%, 20%, 30%, 40%, 50%, 60%, 70% and 80% of
the initial test population were selected per each considered policy. For each
selected set, the proposed XACML similarity approach and the random order
were applied. We record the APFD values for each policy and repetition of
the experiment. Thus, a total of 60 values (6 policies * 10 independent
repetitions) per examined size were collected.

Figure 9 shows the obtained results as box plots per selected size. Gener-
ally, the box plot representation graphically represents the distribution of the

34

collected values. The area within the boxes represents the data that have
values higher than the 25% and lower than the 75% of all the population
data values. The horizontal line inside the box represents the median value.
In Figure 9 the two boxes of each graph represent the results of the XACML
similarity. Each one of the graphs corresponds to the examined test suite
sizes. Thus, the results evidence that XACML similarity kills a higher num-
ber of mutants than the random order. So, in reply to RQ2, we can conclude
that the XACML similarity is not affected by the size of the prioritized test
sets.

To investigate further RQ2 we formally compared the XACML similarity
and the random approach, using the Mann-Whitney U test. This is a non-
parametric statistical hypothesis test that allows for comparing two samples
without making assumptions about the distribution of the underlying popu-
lation. We test the hypothesis that the mutation score achieved by the test
cases of the XACML similarity (MSg;,,) is higher than the mutation score
achieved by the test cases of the random order (MSgu,q). Thus, we test the
following hypothesis (MSg;, > MSgang) with the confidence level 95%.

Given a set of test cases of size n, the hypothesis test involves n compar-
isons of the mutation scores of the two methods (prioritization and random
order). Since the random order involved ten different orderings, we compare
the prioritization technique against the average values of these ten orders.
Overall, based on the statistical analysis we can identify the following four
cases:

True with significance (TS): the prioritization method kills statis-
tically significantly more mutants than the random ordering.

True without significance (TNS): the prioritization method kills
more mutants than the random ordering but without statistical signif-
icance.

False without significance (FNS): the prioritization method kills
less mutants than the random ordering but without statistical signifi-
cance.

False with significance (FS): the prioritization method kills statis-
tically significantly less mutants than the random ordering.

Following these lines, we conduct 60 statistical tests (ten repetitions per
subject policy for the six considered policies) per considered set size (10%,

35

T —

[xAGM._ Similarity [Random |

(a) 10% of the test suite size

e

[XacML Similarty [Random |

(c) 30% of the test suite size

[XacHL Similarty [Random|

(e) 50% of the test suite size

[%ACML Similarity [Random|

(g) 70% of the test suite size

1

] —t—

[xacm simiaity [Random |

(b) 20% of the test suite size

7

] e

[xacmL simitarty] Random |

(d) 40% of the test suite size

[xacme simitarty] Randon |

(f) 60% of the test suite size

[xacM_ Simiaity [Random |

(h) 80% of the test suite size

Figure 9: APFD values for the different test set sizes

36

Table 6: Hypothesis tests for the similarity prioritization and the random orderings

MSSim > MSRand TS | TNS | FNS | FS
10% 43 17 0 0
20% 51 9 0 0
30% 60 0 0 0
40% 60 0 0 0
50% 60 0 0 0
60% 60 0 0 0
70% 60 0 0 0
80% 60 0 0 0

20%, 30%, 40%, 50%, 60%, 70% and 80% of the whole test suite). The
respective results are recorded on Table 6. The results show that the XACML
similarity approach performs significantly better than the random orderings
in all the cases. This fact signifies the ability of the proposed approach to
effectively prioritize the test sets even of a small size.

6. Threats to validity

This section discusses threats to the internal, external and construct va-
lidity of the experiments presented in this paper. Concerning the internal
validity, i.e., the amount of confidence on the reported results, different as-
pects can be considered: the used mutation operators, the employed test set,
the correctness of the implementation and the tools used.

Since the effectiveness of the approach is evaluated in term of fault detec-
tion rate, the set of utilized mutation operators may influence the reported
results. It could be that a different choice of mutation operators might have
provided different effectiveness results. To reduce this risk, the present study
employs a combination of three different mutant sets: first, the set of mutants
used in [26] (this set was adapted to XACML policies); second, the opera-
tors from Martin et al. [27]; third, some new operators based on our most
recent work [20]. However, it would be very interesting to investigate other
mutants and even real faults to provide confidence in the proposed approach
and reduce the threat related to the use of mutation analysis.

Another threat to our proposal is due to the employed test sets. We used

37

those derived by X-CREATE, but it is likely that other test sets may produce
different results. However, X-CREATE represents the current state of the
art in XACML test generation tools. It employs combinatorial interaction
testing, which is a well-established test technique in various domains.

Other threats may be attributed to the implementations of the SIMTAC
tool, the XACMUT mutation tool and the X-CREATE test generation tool.
These tools may have flaws, the presence of which may influence the reported
results. To reduce these threats, several manual tests were performed. Ad-
ditionally, at least two authors independently tested all the implemented
parts.

External validity of the experiment concerns potential issues that may
prevent the generalization of the results. While this is an issue concerning
all empirical studies, including ours, to the authors’ knowledge, the present
study forms one of the largest studies conducted on XACML testing. Addi-
tionally, the six policies have quite different structures. Some have few rules
whereas other ones have a large number of rules. In some cases, the number
of resources is much bigger than the number of subjects and actions (this
is the case for itrust and pluto policies) while in other cases it is the oppo-
site (for VMS policy). Since similar results (our approach performs much
better than random) are observed on all the cases, some confidence that our
approach will behave similarly on other subjects is provided.

With respect to construct validity, i.e., threats regarding the extent of the
utilized measures to the intended properties, some potential issues can also
be identified. One such issue is the use of mutants as a means of effectiveness
evaluation. While this is a potential problem of the conducted experiment, in
practice evaluating one criterion in terms of another one is a usual practice,
e.g., [28]. Since the similarity approach is independent from the employed
mutants, this threat should be balanced. Moreover, using mutants for ef-
fectiveness evaluation forms a common practice in this kind of experiments,

e.g., [29], [30].
7. Related Work

This work spans over several research directions, including: test case
prioritization, access control testing and similarity approaches.

Test Case Prioritization. Test case prioritization relies on test cases re-ordering
techniques to improve the fault detection rate at a given test execution

38

time [22]. In [9], the authors have assessed the fault detection rate of JUnit
and TSL test suites on open-source Java systems through mutation faults.
This rate is impacted by mutation faults number and by test suites effective-
ness to detect faults.

In [31], the authors have conducted a series of controlled experiments
to evaluate test case prioritization techniques based on time constraints and
fault detection rate. Their results favor the application of heuristics when the
software contains considerable faults number and when the testing process
has no time constraints. In [8, 32|, the authors have conducted experimental
studies to show the effectiveness of prioritization techniques to improve fault
detection rate in the context of regression testing. Our approach does not
address regression testing, although it could be adapted to be applicable in
a regression testing context when the access control policy evolves [33].

While most of the prioritization techniques in the literature rely on code
coverage [34, 35, 36], some recent approaches have adopted different metrics.
In [37], the authors use system models and system behavior to prioritize
test cases. They have compared their approach with other prioritization
techniques and have shown its effectiveness in early fault detection. The
authors in [38] have used expert knowledge to achieve pair-wise comparison
of test cases and have proposed similarity metrics, like we have done in the
current work, between test cases clusters. Finally, the work in [12] improves
the similarity-based test case prioritization using the ordered sequence of
program elements measured by execution counts. The authors show that the
proposed technique increases the rate of fault detection with respect to other
coverage-based approaches.

Testing Access Control Systems. Testing Access Control Systems is a critical
issue and the complexity of the XACML language specification prevents the
manual specification of a set of test cases capable of covering all the possible
interesting critical situations or faults. This implies the need of automated
test cases generation for testing on the one side the XACML policy spec-
ification and on the other that the PDP behavior conforms to the policy
specification.

Among the available proposals, the Targen tool [4] generates test inputs
using combinatorial coverage of the truth values of independent clauses of
XACML policy values. This approach has been proven to be more effective
than random generation strategy in terms of structural coverage of the policy
and fault detection rate [4].

39

A more recent tool is X-CREATE [13, 5, 14] that provides different strate-
gies based on combinatorial approaches of the subject, resource, action and
environment values taken from the XACML policy for deriving the access
requests. Experimental results presented in [13] show that the fault detec-
tion rate of X-CREATE test suites is similar or higher than that of Targen
test suites. Specifically, three main generation strategies are defined into
X-CREATE: i) the Simple Combinatorial testing strategy [5] that derives
an XACML request for each of the possible combinations of the subject,
resource, action and environment values taken from the policy; i) the XPT-
based testing strategy [13, 5] that generates requests using the structures ob-
tained applying the XPT strategy [39] to the XACML Context Schema [3];
ii1) the Multiple Combinatorial strategy that relies on combinations of more
than one subject, resource, action and environment values for generating
XACML requests. This last strategy automatically establishes the number
of subjects, resources, actions and environments of each request according to
the complexity of the policy structure and targets the policy rules in which
the effect is simultaneously dependent on more than one constraint [14]. A
detailed comparison of X-CREATE test generation strategies in terms of fault
detection is presented in [5, 14]. Among the X-CREATE generation strate-
gies we selected in this paper Simple Combinatorial for deriving test suites
used to empirically validate the effectiveness of the proposed approach. This
strategy is simple and easy-to-apply while at the same time it can reach the
coverage of the policy values combinations. More detail about this strategy
are presented in Section 2.2.

The work in [21] addresses model-based testing and provides a method-
ology for the generation of test cases based on combinatorial approaches of
the elements of the model (role names, permission names, context names).
Such approach automatically derives abstract test cases that have to be then
refined into concrete XACML requests for being executed on a PDP.

Concerning the testing of the XACML PDP, the approach proposed in
[17] focuses on running different XACML implementations for the same test
inputs and can detect not correctly implemented XACML functionalities
when different outputs are observed.

In software testing, mutation analysis [40] is commonly used to assess the
effectiveness of a test suite. It consists of introducing single faults in a given
program and running tests to assess their capability to detect these faults.
Mutation analysis has been applied on access control policies [27, 26, 20] to
qualify security tests. By means of mutation operators, the policy under test

40

is modified to derive a set of faulty policies (mutants) each containing a fault.
A mutant policy is killed if the response of an XACML request executed on
the mutant policy differs from the response of the same request executed
on the original policy. In [27] the authors define a fault model for access
control policies and a set of mutation operators manipulating the predicates
and logical constructs of target and condition elements of an XACML policy.
They have used mutation analysis applied on access control policies to assess
coverage criteria for test generation and test selection in terms of fault de-
tection rate. In [26] the authors try to extend the mutation operators of [27],
focusing on the use of a metamodel that allows to simulate the faults in the
security models independently from the used role-based formalism (R-BAC
or OrBAC). Finally, the work in [20] includes and enhances the mutation op-
erators of [27] and [26] addressing specific faults of the XACML 2.0 language
and providing a tool, called XACMUT, for the derivation of XACML muta-
tion operators and their application to XACML policies. In this paper, the
XACMUT tool has been adopted for deriving from an XACML policy a set
of mutants used to assess the effectiveness of the proposed similarity-based
prioritization approaches.

Similarity approaches. Similarity has been used in previous work for XACML-
based policies comparison. In [41, 42], the authors have defined similarity dis-
tances to enable comparing access control policies in order to locate providers
that have similar policies in large scale environments like cloud systems. The
number of policies that have to be evaluated at a given time can be reduced
under the assumption that similar policies might provide the same decisions.
Therefore they focus on comparing policies and do not compare requests as
done in this current work. In fact, to the best of our knowledge, similarity
has not yet been applied in the context of XACML policies testing. This
heuristic has mainly been applied in the context of model-based testing. For
instance, Cartaxo et al. [43] presented a strategy for automatic test case se-
lection based on the use of a similarity function. Labeled transition systems
are the model from which test cases are obtained. The similarity function f
used is calculated by observing the number of identical transitions and the
average between paths length. They, then use a greedy approach to select
the test cases. On the same direction, Hemmati et al. [18, 15] investigated
and compared possible similarity functions that can be used for test cases
selection in the context of state machine testing. The selection strategy used
is based on genetic algorithms. Test cases are encoded using UML state

41

machines with states, transitions and triggers/guards.

Similarity has also been used to cluster test cases. Sapna et al. [44] used
the Levenshtein distance to compare test cases and agglomerate hierarchical
clustering in order to select dissimilar test scenarios with maximum cover-
age and fault detection rate. UML activity diagrams are the model used
from which test cases are obtained. In this work, we use similarity also for
improving the fault detection rate of the selected subset of requests.

Finally, in [19, 45], similarity is used to generate and prioritize test suites
in the context of Software Product Lines. In these works, similarity was
evaluated in terms of a) covering t-wise interactions [19] and b) killing mu-
tants related to the product line representation, i.e., feature models [45]. In
our work, similarity is used to distinguish redundant test cases and prioritize
them. In line with our work, Henard et al. [45] uses mutation to evaluate
the effectiveness of the selected test suite. Additionally, in [19] the authors
introduce a prioritization technique, called Global Maximum Distance [19],
which is also used in this paper (the mutation-based strategy).

In our work, we are targeting a completely different and new context,
which is XACML policies testing and we rely on similarity to prioritize
XACML requests. All these previous work are however using the same heuris-
tic and applying it to other contexts.

8. Conclusions and Future Work

In this paper, we presented a new approach based on similarity, and
implemented into the SIMTAC tool, aiming at prioritizing tests in the con-
text of XACML access control systems. We proposed two similarity-based
prioritization metrics: the first strategy is the simple similarity, which is
policy-independent and involves comparing the content of requests; the sec-
ond approach is called XACML similarity and considers the applicability of
the requests to the XACML policy. We performed an empirical study to
evaluate the effectiveness of the simple and the XACML similarity metrics
when applied to the test suites related to a set of six real-world XACML poli-
cies. The results showed that the second approach is effective and provides a
mutation coverage that is significantly better than random prioritization and
close to a greedy-optimal heuristic cognizant of the requests effectiveness.

In future work, we plan to investigate several other issues related to the
proposed approach. In particular, we want to refine the proposed applica-
bility relation taking into account further elements of the XACML policy

42

such as the condition or the combining algorithm. Indeed this last plays an
important role in case of policies with conflicting rules. Moreover, we plan to
extend the similarity-based prioritization metrics in order to consider other
test case generation strategies, also based on the combination of more than
one subject, resource, action, environment.

Future work will also include further experimentation considering more
XACML policies and the application of the SIMTAC tool to evaluate the
effectiveness of the similarity-based prioritization metrics applied to different
test suites.

Acknowledgment

This work has been partially funded by the Network of Excellence on
Engineering Secure Future Internet Software Services and Systems (NESSoS)
FP7 Project 256980.

References

[1] TAS3 Project, Trusted Architecture for Securely Shared Services, http:
//www.tas3.eu/.

[2] NESSoS Project, Network of Excellence on Engineering Secure Future
Internet Software Services and Systems, http://www.nessos-project.
eu/.

[3] OASIS, extensible access control markup language (XACML) version
2.0, 1 Feb 2005.

[4] E. Martin, T. Xie, Automated Test Generation for Access Control Poli-
cies, in: Supplemental Proc. of 17th International Symposium on Soft-
ware Reliability Engineering (ISSRE), 2006.

[5] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, Automatic
XACML requests generation for policy testing, in: Proc. of The Third
International Workshop on Security Testing (SECTEST), 2012, pp. 842
849.

[6] S. Elbaum, A. G. Malishevsky, G. Rothermel, Prioritizing test cases for
regression testing, SIGSOFT Softw. Eng. Notes 25 (5) (2000) 102-112.

43

[7]

[10]

[11]

[12]

[13]

[14]

[15]

Z. Li, M. Harman, R. M. Hierons, Search algorithms for regression test
case prioritization, IEEE Transactions on Software Engineering 33 (4)
(2007) 225-237.

G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, Prioritizing test
cases for regression testing, IEEE Transactions on Software Engineering
27 (10) (2001) 929-948.

H. Do, G. Rothermel, On the use of mutation faults in empirical as-
sessments of test case prioritization techniques, IEEE Transactions on
Software Engineering 32 (9) (2006) 733-752.

S. Elbaum, G. Rothermel, S. Kanduri, A. G. Malishevsky, Selecting a
cost-effective test case prioritization technique, Software Quality Journal
12 (3) (2004) 185-210.

L. Zhang, S.-S. Hou, C. Guo, T. Xie, H. Mei, Time-aware test-case pri-
oritization using integer linear programming, in: Proc. of the Eighteenth
International Symposium on Software Testing and Analysis, ACM, 2009,
pp. 213-224.

K. Wu, C. Fang, Z. Chen, Z. Zhao, Test case prioritization incorporating
ordered sequence of program elements, in: Proc. of 7th International
Workshop on Automation of Software Test (AST), 2012, pp. 124-130.

A. Bertolino, F. Lonetti, E. Marchetti, Systematic XACML Request
Generation for Testing Purposes, in: Proc. of 36th EUROMICRO Con-
ference on Software Engineering and Advanced Applications (SEAA),
2010, pp. 3-11.

A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, L. Schilders, Auto-
mated testing of extensible access control markup language-based access
control systems, IET Software 7 (4) (2013) 203-212.

H. Hemmati, L. Briand, An industrial investigation of similarity mea-
sures for model-based test case selection, in: Proc. of the 21st Interna-
tional Symposium on Software Reliability Engineering (ISSRE), 2010,
pp. 141-150.

C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, B. Xu, An improved
regression test selection technique by clustering execution profiles, in:

44

[17]

18]

[19]

[20]

[21]

[22]

Proc. of 10th International Conference on Quality Software (QSIC),
2010, pp. 171-179.

N. Li, J. Hwang, T. Xie, Multiple-implementation testing for xacml
implementations, in: Proc. of the Testing, Analysis, and Verification of
Web Services and Applications (TAV-WEB), 2008, pp. 27-33.

H. Hemmati, A. Arcuri, L. Briand, Achieving scalable model-based test-
ing through test case diversity, ACM Trans. Softw. Eng. Methodol.
22 (1) (2013) 1-42.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans,
Y. Le Traon, Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product
lines, IEEE Trans. Software Eng.

A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti., XACMUT:
XACML 2.0 Mutants Generator, in: Proc. of 8th International Work-
shop on Mutation Analysis (associated with ICST 2013), 2013, pp. 28—
33.

A. Pretschner, T. Mouelhi, Y. L. Traon, Model-based tests for access
control policies, in: Proc. of First International Conference on Software
Testing, Verification (ICST), 2008, pp. 338-347.

G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, Test case prioriti-
zation: An empirical study, in: Proc. of IEEE International Conference
on Software Maintenance (ICSM), IEEE, 1999, pp. 179-188.

K. Maly, M. Zubair, M. Nelson, X. Liu, H. Anan, J. Gao, J. Tang,
Y. Zhao, Archon - a digital library that federates physics collections.

Realsearch group at NCSU, iTrust: Role-Based Healthcare, http://
agile.csc.ncsu.edu/iTrust/wiki/doku. php.

L. Zhang, D. Hao, L. Zhang, G. Rothermel, H. Mei, Bridging the gap
between the total and additional test-case prioritization strategies, in:
Proc. of the International Conference on Software Engineering (ICSE),
2013, pp. 192-201.

45

[26]

[27]

28]

[31]

[32]

[33]

T. Mouelhi, F. Fleurey, B. Baudry, A generic metamodel for security
policies mutation, in: Proc. of Software Testing Verification and Valida-
tion Workshop (ICSTW), 2008, pp. 278-286.

E. Martin, T. Xie, A fault model and mutation testing of access control
policies, in: Proc. of 16th International Conference on World Wide Web
(WWW), pp. 667-676.

D. F. Yates, N. Malevris, An objective comparison of the cost effec-
tiveness of three testing methods, Information and Software Technology
49 (9) (2007) 1045-1060.

J. H. Andrews, L. C. Briand, Y. Labiche, A. S. Namin, Using muta-
tion analysis for assessing and comparing testing coverage criteria, IEEE
Trans. Software Eng. 32 (8) (2006) 608-624.

H. Do, G. Rothermel, On the use of mutation faults in empirical assess-
ments of test case prioritization techniques, IEEE Trans. Software Eng.
32 (9) (2006) 733-752.

H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, The effects of time
constraints on test case prioritization: A series of controlled experiments,
IEEE Transactions on Software Engineering 36 (5) (2010) 593-617.

S. Elbaum, A. G. Malishevsky, G. Rothermel, Test case prioritization: A
family of empirical studies, IEEE Transactions on Software Engineering
28 (2) (2002) 159-182.

J. Hwang, T. Xie, D. El Kateb, T. Mouelhi, Y. Le Traon, Selection of
regression system tests for security policy evolution, in: Proc. of the 27th
International Conference on Automated Software Engineering (ASE),
2012, pp. 266—269.

A. Kaur, S. Goyal, A genetic algorithm for regression test case priori-
tization using code coverage, International journal on computer science
and engineering 3 (5) (2011) 1839-1847.

D. Leon, A. Podgurski, A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test cases, in:
Proc. of 14th International Symposium on Software Reliability Engi-
neering (ISSRE), 2003, pp. 442-453.

46

[36]

[39]

[40]

[41]

[44]

[45]

K. R. Walcott, M. L. Soffa, G. M. Kapfthammer, R. S. Roos, Timeaware
test suite prioritization, in: Proc. of the 2006 International Symposium
on Software Testing and Analysis, 2006, pp. 1-12.

L. Tahat, B. Korel, M. Harman, H. Ural, Regression test suite prioritiza-
tion using system models, Software Testing, Verification and Reliability
22 (7) (2012) 481-506.

S. Yoo, M. Harman, P. Tonella, A. Susi, Clustering test cases to achieve
effective and scalable prioritisation incorporating expert knowledge, in:
Proc. of the 18th International Symposium on Software Testing and
Analysis, 2009, pp. 201-212.

A. Bertolino, J. Gao, E. Marchetti, A. Polini, Automatic test data gen-
eration for XML schema-based partition testing, in: Proc. of Second
International Workshop on Automation of Software Test (AST), 2007,
pp. 4-10.

Y. Jia, M. Harman, An analysis and survey of the development of muta-
tion testing, IEEE Transactions on Software Engineering 37 (5) (2011)
649-678.

D. Lin, P. Rao, E. Bertino, J. Lobo, An approach to evaluate policy
similarity, in: Proc. of the 12th ACM Symposium on Access Control
Models and Technologies (SACMAT), 2007, pp. 1-10.

D. Lin, P. Rao, R. Ferrini, E. Bertino, J. Lobo, A Similarity Measure
for Comparing XACML Policies, IEEE Transactions on Knowledge and
Data Engineering 25 (9) (2013) 1946-1959.

E. G. Cartaxo, P. D. L. Machado, F. G. O. Neto, On the use of a
similarity function for test case selection in the context of model-based
testing, Softw. Test. Verif. Reliab. 21 (2011) 75-100.

P. G. Sapna, H. Mohanty, Clustering test cases to achieve effective test
selection, in: Proc. of the 1st Amrita ACM-W Celebration on Women
in Computing in India (A2CWiC), 2010, pp. 15:1-15:8.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y. L. Traon, Assessing
software product line testing via model-based mutation: An application
to similarity testing, in: ICST Workshops, 2013, pp. 188-197.

47

