
Flattening or Not of the Combinatorial Interaction
Testing Models?

Christopher Henard, Mike Papadakis, and Yves Le Traon
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg, Luxembourg, Luxembourg
christopher.henard@uni.lu, michail.papadakis@uni.lu, yves.letraon@uni.lu

Abstract—Combinatorial Interaction Testing (CIT) requires
the use of models that represent the interactions between the
features of the system under test. In most cases, CIT models
involve Boolean or integer options and constraints among them.
Thus, applying CIT requires solving the involved constraints,
which can be directly performed using Satisfiability Modulo
Theory (SMT) solvers. An alternative practice is to flatten the
CIT model into a Boolean model and use Satisfiability (SAT)
solvers. However, the flattening process artificially increases the
size of the employed models, raising the question of whether it is
profitable or not in the CIT context. This paper investigates this
question and demonstrates that flattened models, despite being
much larger, are processed faster with SAT solvers than the
smaller original ones with SMT solvers. These results suggests
that flattening is worthwhile in the CIT context.

I. INTRODUCTION

Combinatorial Interaction Testing (CIT) is a widely used
technique for uncovering interactions faults between features
of software systems [1]. This approach is especially useful for
systems involving a large number of configuration options or
events, such as operating systems or Software Product Lines
(SPLs) [2]. Applying CIT requires modeling all the options
and their constraints that may influence the system under test,
which results in a model called CIT model.

Most of the existing CIT approaches deal only with
Boolean options and constraints. For instance, the approach
proposed by Henard et al. [3], which has been shown to out-
perform the current state-of-the-art tools in terms of scalability,
operates on Boolean models. These types of CIT model are
called feature model. The approach is promising since it is
both scalable and capable of generating and prioritizing t-wise
sets efficiently. Since many real world problems have more
complex properties than Boolean ones, such as program inputs
[4], [5], it is legitimate to wonder whether approaches based on
Boolean models are really useful in practice. Otherwise, they
are limited to the scope of simple problems. In other words,
apart from Boolean models, we need to consider using integer
or more complex CIT models, as they are more realistic.

In practice, any CIT model containing a finite set of values
for the options can be transformed to a model where all its
constraints and options are Boolean. This process is called
flattening and it has the particularity of making the model
artificially larger both in terms of number of options and
constraints. For instance, a feature model of more than 6,000

2015 IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW)
4th International Workshop on Combinatorial Testing (IWCT 2015)
978-1-4799-1885-0/15/$31.00 c©2015 IEEE

options has been reverse-engineered for Linux [6]. However,
many configuration options in Linux are non-Boolean and have
thus been flattened, meaning that a non-Boolean model for
Linux would contain much less options and constraints. It
raises the question of whether we should prefer flattened CIT
models over the original and smaller CIT models.

In this context, we empirically investigate whether flatten-
ing CIT models to Boolean ones is slowing down the constraint
solving process. To this end, we employ CIT models from
the literature that we flatten to Boolean ones. We then use
Satisfiability Modulo Theory (SMT) solvers to solve the CIT
models and Satisfiability (SAT) solvers to solve the flattened
CIT models. In other words, we try to answer the question
of whether the use of SMT over the SAT solvers is profitable
in the context of CIT. Our experiments show that, despite the
larger amount of options and constraints to handle, flattened
CIT models are processed faster with SAT solvers than the
smaller original ones with SMT solvers.

The remainder of this paper is organized as follows. Section
II presents the flattening of CIT models by first describing it
on an example and then formalizing the general methodology.
Then, Section III describes the conducted experiments and
examines threats to its validity. Finally, Section IV discusses
related work before Section V concludes the paper.

II. THE FLATTENING OF COMBINATORIAL MODELS

This section introduces the flattening process of CIT
models through an example. This process follows the lines
suggested by Cohen et al. [7] and Papadakis et al. [5]. Then,
the general flattening methodology is formalized.

Let M be a CIT model, with M = (O,C) and where
O is the set of n options (or variables) and C is the set of
k constraints between the options. Each constraint is written
as a disjunctive clause. The objective is to flatten M into a
Boolean model denoted as Mf = (Of , Cf).

A. A Running Example

In this section, a small example for flattening a CIT model
M = (O,C) into Mf = (Of , Cf) is presented.

1) A Simple CIT Model: As a running example, consider
the following CIT model with two options and one constraint:
M = ({o1 ∈ {v1, v2}, o2 ∈ {v3, v4, v5}}, {(o1 = v1 ∨ o2 6=
v5)}). The first option can take the two values v1 and v2
while the second one can take the three values v3, v4 and v5.
Thus, the domain of o1 is {v1, v2} and the domain of o2 is

{v3, v4, v5}. Note that the CIT model options of this example
can be represented as 2131, such as in the work of Petke et al.
[4]. It means that there is one option that can take two different
values and one option that can take three values. The example
model also involves the constraint (o1 = v1 ∨ o2 6= v5),
meaning that we require either o1 taking the value v1 or o2
taking a value different from v5. Note that this constraint can
be written as (v1 ∨ ¬v5).

2) Flattening the Options: To flatten the options, we sim-
ply create one option per option value. Thus, flattening o1
results in two Boolean options ov1 and ov2 and flattening o2
leads to three Boolean options ov3 , ov4

and ov5 . As a result,
flattening the model increased the number of options from 2
to 5, and we have Of = {ov1 , ov2 , ov3 , ov4 , ov5}, with each
ovi ∈ {true, false}.

3) Flattening the Constraints: Flattening the constraints of
M is quite immediate. We simply match the values in the
constraint to the new options. Thus, the constraint (o1 = v1 ∨
o2 6= v5) = (v1 ∨¬v5) is transformed to (ov1 = true ∨ ov5 =
false), which can be written more simply as (ov1 ∨¬ov5). In
the following, we will use this simplified notation.

Besides to the constraint of M , we also need to add
additional constraints due to the flattening of the options. These
constraints prevents a given option to take two different values
at the same time. Thus, since we cannot have at the same
time o1 = v1 and o1 = v2, we add the following constraints:
(ov1∨ov2) and (¬ov1∨¬ov2). We process similarly for o2, thus
adding the four following constraints: (ov3∨ov4∨ov5), (¬ov3∨
¬ov4), (¬ov3 ∨ ¬ov5) and (¬ov4 ∨ ¬ov5). As a result, the
flattening increased the number of constraints from 1 to 7 and
we have Cf = {(ov1∨¬ov5), (ov1∨ov2), (¬ov1∨¬ov2), (ov3∨
ov4 ∨ ov5

), (¬ov3 ∨ ¬ov4), (¬ov3 ∨ ¬ov5), (¬ov4 ∨ ¬ov5)}.

B. General Flattening Methodology

The flattening methodology applied to the example is
formalized as follows:

1) Flattening the Options: If O = {o1, ..., on}, where each
option oi can take up to m values in a domain Di = vi1, ..., v

i
m,

then Of = {ov1
1
, ..., ov1

m
, ..., ovn

1
, ..., ovn

m
}, where each ovx

y
is

Boolean.

2) Flattening the Constraints: If C = {c1, ..., ck}, where
each constraint cj is a disjunctive clause of the form [¬]vxy ∨
...∨[¬]vxy , with x ∈ {1, ..., n}, y ∈ {1, ...,m} and [¬] meaning
the presence of a negation or not, then Cf = {c′1, ..., c′k} with
each c′j of the form [¬]ovx

y
∨ ... ∨ [¬]ovx

y
.

The, additional constraints, which prevent options to
take several values at the same time, are added to
Cf . For the sake of simplicity, we now denote Of =
{ov1

1
, ..., ov1

m
, ..., ovn

1
, ..., ovn

m
} as Of = {of1 , ..., ofs}. We first

add to Cf the constraint (of1 ∨ of2 ∨ ...∨ ofs). Then, for each
ofi such as 1 ≤ i < s, the following constraints are added to
Cf : (¬ofi ∨ ¬ofi+1

), (¬ofi ∨ ¬ofi+2
), ..., (¬ofi ∨ ¬ofs).

III. EXPERIMENTS

In this section, we compare the execution time of SMT
solvers on CIT models against the execution time of SAT
solvers on the flattened version of each CIT model. The

TABLE I. THE SUBJECT CIT MODELS AND THEIR CORRESPONDING
FLATTENED VERSIONS.

CIT Model [4], [8] Flattened CIT Model

Options Constraints Options (Bool.) Constraints

Flex 9 (263251) 12 23 43

Sed 11 (27314161101) 50 37 137

Grep 9 (213342516181) 83 38 167

Make 10 (210) 1 20 21

Gzip 14 (21331) 61 29 91

TCAS 12 (273241102) 6 44 127

Storage5 22 (253853618191102111) 246 109 567

Services 13 (23345282102) 404 64 598

Insurance 14 (26315162111131171311) 0 104 797

GCC 199 (2189310) 15,705 408 16123

objective is to determine whether the flattening of CIT models
has an impact on the time required by a solver to solve
the model. Generally, there are two types of solvers that
are compared, i.e., the SAT and the SMT, on two instances
of the same problem, i.e., the flattened and the unflattened
CIT model. Despite solving the same problem, the flattened
model requires from the SAT solver to handle a considerably
higher number of options and constraints than required by
the unflattened one from the SMT solver. Thus, we aim at
answering the following research question (RQ):

[RQ] Does the flattened CIT models are processed slower
than the unflattened ones when using SAT and SMT solvers?

In the following, the setup and results of the experiments
are presented. Then, the research question is answered and
possible threats to the validity of the experiments are presented.

A. Setup

We use 10 CIT models presented in the work of Petke et al.
[4] and [8]. These experimental subjects were chosen because
they are both real and of different sizes and complexity. For
each of these models, we flattened them into Boolean ones.
The details of these models are recorded in Table I. For each
subject, Table I records the options and constraints it contains.
For instance, the flex CIT model has a total of 9 options, where
6 options can take two different values, 2 options can take 3
values and one option can take 5 values. It also involves 12
constraints. The corresponding flattened model encompasses
23 Boolean options and 43 constraints.

We employ 4 SMT solvers to solve the CIT models and 4
SAT solvers to solve the corresponding flattened models. The
SMT solvers are Yices v2.2.21, Z3 v4.3.32, veriT v2014103,
and CVC4 v1.44. The SAT solvers are Yices-sat v2.2.25, Min-
iSat v2.2.06, Glucose v4.07 and PicoSAT v9608. The solvers
were selected according to their popularity or performances
in SMT/SAT competitions. For instance, veriT was declared
the overall winner of the 2014 SMT competition9. All these
solvers are written in C or C/C++. The versions used are the
latest versions available at the moment of writing.
1 http://yices.csl.sri.com/ 2 http://z3.codeplex.com/
3 http://www.verit-solver.org/ 4 http://cvc4.cs.nyu.edu/web/
5 http://yices.csl.sri.com/ 6 http://minisat.se/
7 http://www.labri.fr/perso/lsimon/glucose/ 8 http://fmv.jku.at/picosat/
9 http://smtcomp.sourceforge.net/2014/.

http://yices.csl.sri.com/
http://z3.codeplex.com/
http://www.verit-solver.org/
http://cvc4.cs.nyu.edu/web/
http://yices.csl.sri.com/
http://minisat.se/
http://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/picosat/
http://smtcomp.sourceforge.net/2014/

TABLE II. AVERAGE (AVG) AND TOTAL TIME TO SOLVE THE SUBJECT CIT MODELS. EACH SOLVER HAS SOLVED EACH MODEL 10,000 TIMES.

SMT Solvers (on CIT models) SAT Solvers (on flattened CIT models)

SMT time per model SAT time per model

Yices Z3 veriT CVC4 Avg Total Yices-sat MiniSat Glucose PicoSAT Avg Total

Flex 2.22 ms 11.14 ms 3.24 ms 10.68 ms 6.82 ms 272.78 s 0.69 ms 2.70 ms 3.01 ms 1.27 ms 1.91 ms 76.67 s

Sed 4.13 ms 12.13 ms 5.90 ms 15.60 ms 9.44 ms 377.62 s 0.73 ms 2.76 ms 3.34 ms 1.51 ms 2.09 ms 83.68 s

Grep 4.32 ms 12.65 ms 6.68 ms 16.98 ms 10.16 ms 406.32 s 0.73 ms 2.77 ms 3.51 ms 1.47 ms 2.12 ms 84.90 s

Make 1.91 ms 10.78 ms 2.65 ms 09.22 ms 6.14 ms 245.57 s 0.70 ms 2.70 ms 2.98 ms 1.24 ms 1.90 ms 76.18 s

Gzip 3.55 ms 12.03 ms 5.31 ms 15.00 ms 8.98 ms 359.00 s 0.70 ms 2.71 ms 3.15 ms 1.31 ms 1.97 ms 78.64 s

TCAS 2.37 ms 12.60 ms 3.69 ms 12.15 ms 7.70 ms 308.10 s 0.83 ms 3.24 ms 3.77 ms 1.63 ms 2.37 ms 94.70 s

Storage5 9.55 ms 16.01 ms 12.06 ms 29.45 ms 16.77 ms 670.65 s 0.99 ms 3.45 ms 4.72 ms 2.30 ms 2.87 ms 114.45 s

Services 9.07 ms 17.80 ms 15.19 ms 38.82 ms 20.22 ms 808.78 s 1.04 ms 3.46 ms 4.94 ms 2.28 ms 2.93 ms 117.26 s

Insurance 2.18 ms 12.46 ms 3.06 ms 11.15 ms 7.21 ms 288.54 s 1.12 ms 3.64 ms 5.21 ms 2.45 ms 3.11 ms 124.26 s

GCC 192.4 ms 198.3 ms 279.5 ms 903.8 ms 393.5 ms 15,740 s 9.41 ms 8.07 ms 14.37 ms 14.86 ms 11.68 ms 467.14 s

Avg all models 23.17 ms 31.6 ms 33.73 ms 106.285 ms 1.69 ms 3.55 ms 4.90 ms 3.03 ms

Total all models 2,317 s 3,159 s 3,373 s 10,629 s 169.39 s 354.93 s 490.22 s 303.393 s

The experiments are performed on a Intel Core i7-2720QM
CPU@2.20GHz with 4GB of RAM running Linux 3.11.0-
18-generic. The solvers are compiled with the Gnu Compiler
Collection (GCC) v4.8.1. We run each SMT solver on each
CIT model 10,000 times, and we record the time required to
solve the model, i.e., the time to decide whether it is satisfiable
or not10. We process similarly for the SAT solvers by using
the flattened models. The execution time has been recorded
using the perf-stat command of Linux. The solvers have
been used “out of the box”, with no specific option or setting.

B. Results

Table II records, for each model, the average time out of
10,000 executions each solver required to solve it. The table
also records the average and total SMT and SAT solving time
per model as long as the average and total time required by
each solver to solve all the models for the 10,000 runs. For
instance, the Yices SMT solver took an average time of 2.22
ms to solve the flex CIT model. The last two lines of Table II
indicate that Yices took 23.17 ms in average to solve the 10
CIT models for a total time of 2,317 s. The last two columns
of the SMT side indicates that the flex CIT model was solved
in 6.82 ms in average or 272.78 s in total by the SMT solvers.

Following Table II, we can observe that the time required
by SAT solvers on the flattened CIT models is practically
always smaller than the solving time of SMT solvers. In most
cases, SAT solving is 2 to 3 times faster. This is happening
despite the additional constraints and options resulting from the
flattening. For instance, with reference to Table I, the flattening
of the grep model increases the number of options by more
than 300% and the number of constraints by more than 100%.
Still, whatever the SMT solver considered, any of the SAT
solver investigated is performing faster on the flattened model.
In some rarely cases, SMT solvers can be faster than SAT,
such as the Yices and veriT solvers which perform faster than
MiniSAT and Glucose on the make model. However, this is
10 In order to decide whether a model is satisfiable (sat) or not (unsat), the
solver tries to find an assignment for the options which is satisfying the
constraints of the model. When such an assignment is found, the model is
considered as satisfiable, and unsatisfiable otherwise.

only valid for specific solvers. The average and total SAT time
is always lower than the SMT ones. This is due to the fact
that when SMT is faster than SAT, the differences observed
are less important than when SAT is faster. Finally, the biggest
difference is observed for the GCC model, which is more than
30 times faster with SAT solvers.

Finally, Figure 1 shows the variation among the execution
times recored for the SMT and SAT solvers. For each type
of solver, it represents 400,000 execution time values (in
seconds) which are represented through a box plot (10,000
runs × 4 solvers × 10 models). From this figure, we can
see that the overall execution times for SAT are lower than
the SMT ones. Indeed, the minimum, 1st quartile, median,
3rd quartile and maximum values for SAT are lower than the
corresponding ones for SMT. The median values for SMT is
0.01 seconds while it is only 0.002 for SAT, demonstrating
that generally, SAT performs faster on the flattened models.
Finally, the analysis of the two samples of 400,000 values
with the Mann-Whitney U test11 results in a p-value lower

11 The Mann-Whitney U Test is a non-parametric statistical hypothesis test
for assessing whether one of two samples of independent observations tends
to have larger values than the other. This test outputs a probability called
p-value which represents the probability that the two samples are equal. It is
conventional in statistics to consider that the difference is significant if the
p-value is lower than the 5% level.

0.0001

0.001

0.01

0.1

1

10

SMT SAT

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Fig. 1. Distribution of the recorded execution times. It encompasses 400,000
values for SMT and 400,000 for SAT (10,000 runs × 4 solvers × 10 models).

than 0.0001, indicating that the difference in the execution
times between SMT and SAT is statistically highly significant.

C. Answer to the Research Question

Based on the presented results and analysis we performed,
and with the current level of technology, we have demonstrated
that the overall processing time required by the SAT solvers is
lower than the one required by the SMT solvers. This is true
on all the considered models. Therefore, our experiment leads
us to the conclusion that the flattening process does not make
the solving process slower.

D. Threats to Validity

We can identify several threats to the validity of this work.
First, we cannot ensure that the reported results do generalize
to other models. To reduce this threat, we used 10 real CIT
models from the literature. Each of these models has a different
number of options and constraints. Additionally, the chosen
subjects have a varying number of values that can be related
with each considered option. Our results are consistent and
they show that the faster SAT solvers are always faster than
all the SMT ones. Even the slower SAT solvers are almost as
fast as the fastest SMT ones. It thus gives confidence that the
reported results can, to some extent, be generalized.

Another threat is attributed to the influencing factors of the
the execution times and the way they are measured. Indeed,
these times can be altered or biased by the way the operating
system is executing the processes. To reduce this threat, we
used the perf-stat tool of Linux, which is designed for
collecting and analyzing the performance of a command. We
also repeated the experiments 10,000 times. Our results were
analyzed with statistical tests to ensure that all the reported
differences are statistically significant. Finally, potential error
in the models can affect the reported results. To reduce this
threat, we manually and carefully checked all the models
involved in the experiments. We also enable the reproducibility
of the conducted experiments by making publicly available all
the models used in the experiments.

IV. RELATED WORK

CIT models have been used in a wide variety of work.
For instance, Petke et al. [4] used CIT models to show that
test suites exercising a higher number of interactions find
more faults. Several test frameworks have been developed for
defining CIT models and performing testing strategies based on
CIT, such as [9] and [10]. Similarly, Boolean CIT models were
also used by many researchers for the purpose of generating or
prioritizing interaction test suites, like in the work of Henard
et al. [3] or Cohen et al. [7]. In this work, we studied both
Boolean and non-Boolean CIT models in the perspective of
the execution time required to be processed.

Regarding the flattening methodology, we used a similar
process as the one described in the work of Papadakis et
al. [5], Cohen et al. [7]. A similar encoding of non-Boolean
models for SAT is performed in the work of Yamada et al. [11].
Their work is orthogonal to our as they focus on optimizing
the SAT process while our work focuses on the comparison
between SMT and SAT. Thus, using their optimization might
increase the advantage of SAT. For the case of feature models

where the features are represented hierarchically with a tree,
flattening has been used to reduce the depth of the tree in
order to facilitate the application of CIT on such models [12].
In this paper, we flatten the options (or the logic) of the
CIT model in order to make each option Boolean instead of
multiple values. We do not handle graphical model. Finally,
regarding the transformation of non-Boolean logic formulas,
general rules can be found in the work of Frisch et al. [13].

V. CONCLUSION AND FUTURE WORK

In this paper, we conducted an experiment on 10 CIT
models and 8 constraint solvers to evaluate whether flattened
CIT models slow down the solving process. Surprisingly, and
despite the higher number of options and constraints, the
results show that flattened models handled by SAT solvers
are not slower to process than unflattened ones handled by
SMT solvers. Therefore, it shows that existing tools operating
on Boolean models do not have any disadvantage on their
efficiency compared to those operating on non-Boolean ones.

In future work, we plan to investigate the findings of the
present paper to a larger set of CIT models. In particular, we
will use very large models and analyze how the complexity of
the models impacts the solving times.

Finally, we make available all the models we used at http:
//research.henard.net/SPL/IWCT 2015.

REFERENCES

[1] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interac-
tions and implications for software testing,” IEEE Trans. Software Eng.,
vol. 30, no. 6, pp. 418–421, 2004.

[2] D. Blue, I. Segall, R. Tzoref-Brill, and A. Zlotnick, “Interaction-based
test-suite minimization,” in ICSE, 2013, pp. 182–191.

[3] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L.
Traon, “Bypassing the combinatorial explosion: Using similarity to
generate and prioritize t-wise test configurations for software product
lines,” IEEE Trans. Software Eng., vol. 40, no. 7, pp. 650–670, 2014.

[4] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency and early
fault detection with lower and higher strength combinatorial interaction
testing,” in ESEC/FSE, 2013, pp. 26–36.

[5] M. Papadakis, C. Henard, and Y. L. Traon, “Sampling program inputs
with mutation analysis: Going beyond combinatorial interaction test-
ing,” in ICST, 2014, pp. 1–10.

[6] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse
engineering feature models,” in ICSE, 2011, pp. 461–470.

[7] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of highly-
configurable systems in the presence of constraints,” in ISSTA, 2007,
pp. 129–139.

[8] Y. Jia, M. Cohen, and M. H. J. Petke, “Learning combinatorial inter-
action test generation strategies using hyperheuristic search,” in ICSE,
2015.

[9] A. Calvagna, A. Gargantini, and P. Vavassori, “Combinatorial interac-
tion testing with CITLAB,” in ICST, 2013, pp. 376–382.

[10] L. Yu, Y. Lei, R. Kacker, and D. R. Kuhn, “ACTS: A combinatorial
test generation tool,” in ICST, 2013, pp. 370–375.

[11] A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and A. Biere,
“Optimization of combinatorial testing by incremental sat solving,” in
ICST, 2015.

[12] S. Oster, F. Markert, and P. Ritter, “Automated incremental pairwise
testing of software product lines,” in SPLC, 2010, pp. 196–210.

[13] A. M. Frisch, T. J. Peugniez, A. J. Doggett, and P. Nightingale, “Solving
non-boolean satisfiability problems with stochastic local search: A
comparison of encodings,” J. Autom. Reasoning, vol. 35, no. 1-3, pp.
143–179, 2005.

http://research.henard.net/SPL/IWCT_2015
http://research.henard.net/SPL/IWCT_2015

