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Enabling testing of large scale highly configurable systems with search-based
software engineering: the case of model-based software product lines

Abstract
Complex situations formed by mixes of versatile environments, various user needs and time-to-market
constraints led to the development of highly configurable systems. In line with the emergence of such
systems, software development is increasingly moving from the production of a single, yet configurable
software to the development of families of software products. Such families of related software are
called Software Product Lines (SPLs), and they allow the automation of the configuration, deployment
and management of tailored software products through the combination of software features. These
features and the constraints defining their legal combinations are usually encoded in a feature model
(FM), which is used to represent a SPL.

One main challenge with SPLs is testing them, a task which is even more difficult as the number
of features proposed is important. Ideally, all the possible products that can be configured from a
SPL should be tested. This, however, is unfeasible in practice since only 270 optional features allows
configuring more products than the number of atoms in the universe. Considering that realistic SPLs
involve thousands of features and that testing capabilities are limited by time and budget constraints,
only a subset of all the configurable products can actually be tested, introducing the needs for strategies
to test such SPLs.

To reduce the testing effort, techniques using combinatorial interaction testing (CIT) have been
proposed and proven to be successful. However, they fail at scaling to large and heavily constrained
SPLs. In addition, CIT is costly to apply due to the combinatorial explosion induced by calculating the
feature combinations. Besides, existing approaches do not consider multiple and potentially conflicting
testing objectives such as minimizing the number of configurations and their cost. In this respect, this
dissertation introduces scalable techniques for both generating and prioritizing relevant SPL product
configurations for CIT by using a similarity heuristic which avoids the combinatorial explosion. In a
second step, methods for handling multiple testing objectives are presented.

The following part of this thesis focuses on the quality assessment of given product configurations
prior to testing. The objective here is to evaluate how good is a given set of configurations according
to different testing criteria, whatever the way these configurations have been selected. This situation
arises when configurations that have to be tested are already available. Since testing these software
products individually is a costly and time consuming task, methodologies to evaluate them prior testing
are introduced, thus allowing to discard unnecessary ones and save testing sessions. In particular, an
approach based on mutation of the SPL FM which can form viable and cheaper alternative to CIT is
presented.

The next part of this dissertation investigates the reverse-engineering of a SPL and its FM from existing
source code of software product variants. Since SPLs allows us to reduce development costs and quickly
derive tailored products for specific market share, automated techniques to migrate similar product
variants into a whole SPL are necessary. In particular, the challenge of reverse-engineering a SPL
which is concordant with the underlying software products is tackled by a fully automated approach.
In addition, since reverse-engineering approaches (whether manually or automatically performed)
are inherently error-prone, a methodology for evaluating and fixing reverse-engineered SPL FM is
presented.

The final part of this dissertation describes the application of the introduced theoretical advances to
an industrial case with the CETREL company. In this project, a credit card authorization system is
tested by using credit card authorizations. The testing process is optimized by modeling credit card
authorizations as a SPL, enabling the application of the above-mentioned generation and evaluation
approaches. All the proposed approaches use search-based techniques combined with constraint solvers
and have been validated through rigorous experiments performed on moderate to large scale SPLs.
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1
General introduction

In this chapter, we present the context and the challenges of this dissertation by setting out the general
principles of highly configurable systems and software product lines, the associated terminology and
the particularities leading to their increasing adoption by the software industry. We then describe the
challenges related to the emergence of this kind of systems, and more specifically the issues addressed
in this thesis.
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Chapter 1. General introduction

1.1 Context

This dissertation focuses on the study of highly configurable systems (HCSs), more particularly
on the specific case of software product lines (SPLs). HCSs are systems whose particularity is
to propose many configuration options, leading to multiple variants of the same system, each of them
varying according to the configuration options selected. SPLs are one type of HCSs [CDS07], whose
characteristic is to allow the configuration and derivation of software products.

1.1.1 Highly configurable systems and software product lines

Configurations everywhere. Complex situations such as mixes of versatile environments, challeng-
ing user needs or time-to-market constraints are leading to the development of customizable and
configurable software systems. The configuration of such systems is usually performed through a
configuration interface where the user or the developer can set the different settings according to his
preferences. These settings are usually predefined withing the system, intrinsically limiting the degree
of variability and granularity proposed by the configurable piece of software. Systems proposing
multiple configuration options are qualified as highly configurable.

Operating systems such as the Linux kernel form a good example of HCSs. Indeed, Linux can be
configured to operate on a specific hardware, e.g., x86 or x64, but there is also the possibility to
configure the functionalities of the system that will be available. For instance, the support for an
internal webcam video capture tool can be enabled. Figure 1.1 shows an example of the configuration
interface for the Linux kernel v2.2.16, which allows the user browsing the different menus to set up
the system options. Constraints among the configuration options prevent the user from choosing
incompatible settings, thus ensuring the consistency of the system. In line with the emergence of
configurable systems, software development is increasingly moving from the production of a single,
yet configurable software to the development of families of software products known as SPLs.

The concept of product line. Product line refers to the idea of designing a set of specific industrial
products matching the needs of customers of a particular domain or market [KSP09, CN01]. The
needs are expressed through features that can be proposed by the different products of the product

Figure 1.1: Configuration interface for the Linux kernel v2.2.6. The user can set the configuration options
according to his preference prior the installation of the operating system.
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1.1. Context

line. Some features may be common to all the products while some others may be specific. Once
all the features are established, tailored products satisfying the specific requirements of the clients
can be built, thus providing the market with a wide variety of products matching the customers
expectations. As a concrete example, Figure 1.2a depicts a product line of smartphones. Some
features are specific to all the phones, for instance, the display screen or the call function. On the
contrary, some features are specific to each phone, such as the size of the screen or the presence or not
of a front camera. The features bestowed by each smartphone result from a choice operated after a
domain or market analysis, thus making each product designed to target a specific range of customers.
The same principles have been applied to software engineering, leading to the concept of SPLs.

SPLs form a specific case of HCSs. The difference, which is illustrated in Figure 1.3, is that instead
of having a single software system that can be configured in multiple ways and with predefined
configuration options, SPLs allow to create tailored software products by combining the different
features. Thus, the configuration step involves the selection of the different capabilities that will be
offered and it results in a software product, which is itself a configurable software system. In SPLs,
the products are software systems and the features are software functionalities or capabilities that
are proposed by each software program. The variability among software products are expressed using
these features [TBK09]. Like for HCSs, there are constraints governing the legal feature combinations.
They are usually encoded in a feature model (FM), which is used to synthetically represent all the
possible products of a SPL. Figure 1.2b depicts an example of the Bitdefender SPL. Each version
proposes a common core of antivirus and Internet security functionalities. However, the “Total
Security” version proposes unique features, i.e., that are not included in the two other editions, such
as file encryption.

(a) A product line of smartphones (b) The Bitdefender software
product line

Figure 1.2: Example of (software) product line.

CONFIG X=X1

CONFIG Y=Y1

CONFIG Z=Z1

...

CONFIG X=X1

CONFIG Y=Y2

CONFIG Z=Z2

...

CONFIG X=X2

CONFIG Y=Y3

CONFIG Z=Z3

...

Features

Configuration

options

Software system

Configuration

process

(a) Configuration of a single config-
urable system

CONFIG X=X1

...

CONFIG X=X2

CONFIG Z=Z1

...

Features &

Software 

artifacts

Software systems

(products)

Configuration

process

Domain analysis

(b) Configuration of software products in soft-
ware product lines

Figure 1.3: Simplified view of the configuration process in configurable systems and software product lines.
Configuring a configurable system results in the same system. In software product line, the configuration
process uses features to construct tailored software products.
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Chapter 1. General introduction

1.1.2 Terminology

To avoid confusion, we define the recurring terminology used throughout the dissertation. Further
details regarding the following concepts and additional definitions are provided in Chapter 2.

• A feature denotes a functionality or characteristic of a software product of a SPL [CHS08].

• A configuration denotes the list of features that are combined in a given software product of
a SPL.

• Configuration space refers to the set of all the possible product configurations of a SPL.

• A Software product (SP) denotes the result of the configuration process in SPLs.

• Software product variants (SPVs) are a set of SPs which share common features.

• Constraints between features are rules which, when they are all simultaneously fulfilled, makes
a a configuration valid. When one or more constraint is not satisfied, the configuration is said
to be invalid.

• Feature models are used to represent a SPL. They encode the features of the SPL and their
associated constraints.

• Configuration generation denotes the process of providing a set of valid configurations for
testing purposes.

• Configuration prioritization refers to the process of ordering a given set of valid configurations
for testing purposes.

1.1.3 Increasing adoption of software product lines

Software reuse involves generating new designs by combining high-level specifications and existing
component artifacts [KSP09]. Reusability and modularity is at the heart of the SPL methodology.
The reusability principles have always been part of software development, with the emergence of
modules in the 1970’s and 20 years later with objected-oriented programming. Software development
paradigms have thus constantly been moving towards reusing the software components. Pushing
further the concept of reusability, the trend nowadays is to reuse pieces of software which can contain
many components or objects, defining the notion of feature. Managing, combining and reusing features
is the essence of SPL engineering. The benefit of this paradigm includes a flexible productivity, higher
quality in the developed SPs, reduced cost and a faster time to market. However, SPLs introduce
several challenges.

1.2 Issues and contributions

The spreading of SPLs and their adoption by the industry has revealed several issues related to SPL
testing. This section first presents the major challenges that we identified and it then describes the
problems addressed in this dissertation. To this respect, Figure 1.4 depicts an overview of these
issues, which are discussed in the following.
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1.2. Issues and contributions

1.2.1 Challenges

Millions of configurations. Testing a SPL is an inherently difficult activity [McG10]. Although
testing all the products that can be configured would be ideal, it is rarely feasible in practice. Indeed,
the number of possible configurations induced by a SPL usually grows exponentially with the number
of features, quickly leading to millions of possible products to test. Since in a real world and industrial
environment, the resources are limited by budget and time constraints, test engineers are seeking
solutions to reduce the size of their test suites, i.e., the products to test, so that they can meet release
deadlines and cost constraints. In this respect, testing techniques such as combinatorial interaction
testing (CIT) have been proposed to reduce the size of the test suites, but they face scalability
issues.

The limitations of existing CIT techniques. CIT reduces the size of the test suites using interaction
coverage. It is a systematic approach for sampling large domains of test data. It is based on the
observation that most of the faults are triggered by the interactions between a small number of features
[KWG04]. An interaction between t ≥ 2 features denotes the possible impact of one feature on the
others, enabled in a specific configuration. While this technique has been widely used in the area and
proven to be effective (for instance, Kuhn et al. [KWG04] have shown that interactions between two
features are able to disclose 80% of the bugs) existing tool face scalability issues, especially when
there are many constraints ruling the possible combination between the features. As a result, they
are often limited to interactions between 2 or 3 features and SPLs of about 1,000 features, but real
SPLs can go over 6,000 features and may require higher interaction strength [KLK08, NKN14]. In
addition, most of the approaches do not consider prioritizing the resulting configurations.

The lack of multiple testing objectives. In real-life situations, generating configurations to test is
a multi-dimensional problem. Indeed, the testing process usually involves multiple objectives. Testing
products with respect to CIT may be one objective, but we might want at the same time to minimize
the number of configurations, to maximize the number of features proposed and to minimize the cost
of testing these products. Such requirements necessitate a trade-off between several testing objectives.

Domain analysis

& modelling Domain design

Configuration 1

Configuration 2

Configuration n

...

Software product line

There are too many configurable products! I cannot 

test all of them!

Which one should I test? In which order?

Combinatorial testing doesn't scale to my 

product line!

In addition, I have different objectives to 

fulfill! I cannot find the good trade-off!

Configuration 1

Configuration 5

Ok, I take these two.

Are they good enough?

How can I evaluate them?

Do I have confidence in them?

I can build many tailored products and I have fast 

time to market! I will make a lot of money!

But I need to test my product line, I cannot wait to 

sell a product to test it because finding and fixing 

bugs might take a lot of time!

I have created many products 

in a ad-hoc way! It starts to be difficult 

to manage! I want the benefits of

software product lines!
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Part II: Mono-objective configuration generation
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Figure 1.4: Issues addressed in the dissertation.
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Chapter 1. General introduction

Without automated support, the configuration process is likely to be highly suboptimal: it requires
the simultaneous satisfaction of multiple and possibly conflicting objectives, i.e., the maximization of
one objective can penalize another objective. Most of the approaches for generating configurations
to be tested target a single objective at a time. While this may be sufficient in certain cases, this
method does not reflect real-life testing situations and constraints.

The need for evaluating configurations prior to testing. Despite the generation of configurations
according to a single or to multiple testing objectives, one issue is to evaluate the quality of a given
set of configurations prior to the testing process. Since testing SPs can take several hours or days,
thus leading to important testing costs, it is important to be able to evaluate the quality of such
configuration upstream the testing process. Generally, CIT serves as a yardstick towards assessing
the ability of a given set of configurations to reveal faults. In other words, the combinatorial testing
criterion forms a measurement of the test suite effectiveness. However, calculating the interaction
coverage is computationally expensive, leading to the necessity to find alternatives to this criterion.
Thus, there is a need to investigate alternative configuration evaluation methods which are at least as
effective in terms of fault detection and faster to compute than combinatorial testing.

Transforming software product variants to software product lines. Migrating existing SPVs to a
a SPL is a challenging task whose profit include a reduced risk to introduce errors when new products
are created. Indeed, creating SPVs with ad-hoc techniques like copy-paste-modify can lead to an
introduction of errors in some SPVs. If the code of each feature is centralized within the SPL and
shared in all the products proposing these features, it allows testing each feature independently. This
allows using SPL testing techniques which aim at testing the whole SPL in an efficient way. Thus,
testing product SPVs is simpler if they are migrated into a SPL via an automated reverse-engineering
approach. However, there are few of such approaches and, like any reverse-engineering technique, they
are error-prone. As a result, techniques for automatically evaluating and fixing reverse-engineered
SPLs and FMs are needed so that they adequately represent the software systems they are based
on.

1.2.2 Overview of the contributions and organization of the dissertation

This dissertation addresses the above-mentioned challenges by using search-based (SB) approaches
[HMZ12] combined with constraint solvers. SB approaches are particularly profitable in the SPL
context since the configuration space can involve millions of configurations and can thus not be
exhaustively searched, and the use of solvers allows us to deal only with valid configurations. Indeed,
invalid configurations are useless from a practical point of view as they lead to SPs that cannot be
deployed.

This thesis encompasses four main parts, each one proposing solutions to address the challenges
presented in the previous section. These four parts are preceded by a first one introducing the
technical background of this dissertation and a state of the art, and they are followed by a last part
presenting an industrial case study and a general conclusion. In the following, the structure of the
dissertation along with an overview of the contributions of each part are presented and depicted in
Figure 1.5.

Part I: Background and state of the art. In this part, technical background of this dissertation
and definitions of the concepts used are introduced in Chapter 2. Related work is discussed in the
following chapter, Chapter 3.
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1.2. Issues and contributions

Part II: Mono-objective configuration generation. Chapter 4 introduces scalable techniques for
both generating and prioritizing configurations with respect to the CIT criterion. The presented
approaches outperforms the state of the art and allows reaching high interaction strengths by using a
SB approach relying on a similarity heuristic and combined with constraint solvers. An empirical
study conducted on 114 SPLs demonstrate the feasibility and practicality of the introduced techniques.
In Chapter 5, an approach relying on an alternative criterion to the CIT one, the mutation criterion,
is used in a SB approach for generating configurations. Mutation promotes configurations revealing
faulty versions of the FM.

Part III: Multi-objective configuration generation. While Chapters 4 and 5 sticks to a single
objective for generation configurations, Chapter 6 introduces a multi-objective generation approach
for generating SPL configurations satisfying multiple testing objectives. The technique enhances and
outperform the sate of the art by adding constraint solving support. While these testing objectives
target a single configuration, the following chapter generalizes the multi-objective approach by
introducing the first approach supporting testing objectives targeting a set of configurations. The
approaches introduced in this part have been validated through case studies.

Part IV: Configuration evaluation. In this part, Chapter 8 uses the mutation criterion introduced
in Chapter 5 to evaluate the quality of configurations. A link is established between the mutation
criterion and the similarity heuristic presented in Chapter 4. In particular, it is shown that the
similarity heuristic is good to detect faulty versions of the FM. The following chapter, Chapter 9
shows that this alternative criterion, mutation, correlate with fault detection and that it can form a
viable alternative to CIT. These two chapters also conduct empirical studies to demonstrate their
practicality.

Part V: Reverse-engineering and re-engineering. Chapter 10 presents a preliminary automated
and language-independent approach for migrating SPVs into a SPL. It is the first approach which is
fully automated. The next chapter introduces a test and fix loop which uses search to automatically
test and fix reverse-engineered FMs. The idea behind this approach is to automatically improve
reverse-engineered FMs so that they represent better the system they model. Fixing such models
is important as all the previous parts operate on the SPL FMs. Both these chapter conduct case
studies to assess their benefits.

Part VI: Industrial application and final remarks. In this part, Chapter 12 presents an industrial
application of the techniques presented in Parts II, III and IV with the CETREL company. CETREL
is a company handling credit card transactions in Luxembourg. We optimize the testing process
of their card authorization system by modeling credit card authorizations as a SPL FM, enabling
the application of the above-mentioned generation and evaluation techniques. In particular, the
redundancy among authorizations is removed, reducing the authorizations by more than 80%, and
variability metrics are provided to assess the quality of the authorizations. Finally, Chapter 13
concludes the dissertation and discusses future research directions.

Software product line
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Configuration 1
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Configuration n
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Figure 1.5: Structure of the dissertation.
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Technical background and

definitions
This chapter presents technical background and definitions used in this dissertation.
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Chapter 2. Technical background and definitions

2.1 Model-based software product lines

2.1.1 Software product line engineering

Software engineers build many variations of their systems in order to match the specific needs of
particular clients [CHW98]. Software product line engineering (SPLE) [CN01] is a software
development paradigm designed to handle this situation. It applies product lines techniques to
software systems and involves the creation and the management of a SPL which encompasses the
different variants, called products. SPLE appeared in 1990 with the development of feature-oriented
domain analysis [KLD02]. SPLE handles variability as a first-class concept through feature models
(FMs) [KCH+90].

2.1.2 Feature models

In essence, a FM aims at defining legal combinations of features authorized or supported by a system
using hierarchical decomposition and additional constraints. This dissertation focuses on model-based
testing of SPLs where the variability model is a FM. Such a model encompasses the constraints linking
the features, thus defining the legal combinations between them. Feature modeling is a popular way
to model SPL variability and it is by far the most reported in industry [BRN+13]. Thus, basing
SPL testing techniques on FMs as means of documenting variability seems appropriate. Moreover,
FMs may be used to reason about systems that are not SPLs according to the classical definitions
[CN01, PBL05]. Thus, a FM can represent the variability of a SPL or of a highly configurable
system.

Definition 1 (Feature model) Let a FM be a tuple FM = (F,K), where F = {f1, ..., fn} is set
of n Boolean features and K = {c1, ..., ck} a set of k constraints over the features. A constraint c is
satisfied if all its constraints are satisfied, i.e., evaluated to true.

As an example, consider the FM depicted in Figure 2.1. It contains 9 features: F = {f1, ..., f9} .
Some features are mandatory (included in every product), e.g., the “draw” feature. Other features

RasterGraphicsEditor

Draw ColorPaletteSelection Rendering

BlackWhite ColorRectangular ByColor

Mandatory

Optional

Or

Exclusive Or

Requires

Excludes

Figure 2.1: A feature model of a raster graphics editor software product lines. It encompasses the 9 features
and the constraints linking them.
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2.1. Model-based software product lines

are constrained in their occurrence. For instance, the “color” feature requires the “color palette”. It
also encompasses k = 18 constraints represented as follows in conjunctive normal form:

K = {f1, (f2 ∨ f1), (f1 ∨ f2), (f3 ∨ f1), (f1 ∨ f3), (f4 ∨ f1), (f5 ∨ f1), (f1 ∨ f5), (f6 ∨ f3), (f7 ∨ f3), (f3 ∨
f6 ∨ f7), (f8 ∨ f5), (f9 ∨ f5), (f5 ∨ f8 ∨ f9), (f8 ∨ f9), (f7 ∨ f4), (f4 ∨ f8), (f9 ∨ f4)}.

A FM can also be converted to a Boolean formula [MWC09] to be used within constraint solvers,
such as satisfiability (SAT) solvers [LBP10] for reasoning and analysis. Such Boolean formulas are
a conjunction of logical clauses, where a clause is a disjunction of m literals. As a result a clause
represents a constraint of the FM and a literal is a feature that is selected (fj) or not (fj). Thus, a
FM can also be written in the form of a Boolean formula as follows:

FM =
k∧

i=1

 ∨
j∈[1;n]

lj

, where lj = fj or fj .

For instance, the corresponding Boolean formula of the FM of Figure 2.1 is a conjunction of all the
constraints:

FM = f1∧ (f2∨f1)∧ (f1∨f2)∧ (f3∨f1)∧ (f1∨f3)∧ (f4∨f1)∧ (f5∨f1)∧ (f1∨f5)∧ (f6∨f3)∧ (f7∨
f3)∧ (f3 ∨ f6 ∨ f7)∧ (f8 ∨ f5)∧ (f9 ∨ f5)∧ (f5 ∨ f8 ∨ f9)∧ (f8 ∨ f9)∧ (f7 ∨ f4)∧ (f4 ∨ f8)∧ (f9 ∨ f4).

Feature models are now equipped with formal semantics [SHT06], automated reasoning operations and
benchmarks [BSRC10], tools [KTS+09] and languages [Bat05]. There are also used to derive software
products [BSRC10], configure them [AHH11] and for automated quality assurance [POS+12].

Finally, while this dissertation focuses on FMs to represent the SPL variability, other formalisms may
be used to represent variability. For instance, Acher et al. [ABBJ14] used openSCAD, a non-visual
modeling tool for 3D printing. There is also the unified modeling language (UML) [ZJ06], which
can combined with the object constraint language (OCL) to express the feature constraints [ZHJ04].
FMs were also declined to represent other things than the possible software products that can be
configured, such as the marketing view or the environmental context [CCMJ12] or a taxonomy of
model transformation [CH06].

2.1.3 Configurations

Configurations represent the features that are proposed by a software product of a SPL. In this
context of SPLs based on FMs, let a configuration be an assignment of selected/unselected features
satisfying the constraints of the FM.

Definition 2 (Configuration) A configuration (of a software product of a SPL) is a set C =
{±f1, ...,±fn}, where +fi indicates a feature of the FM which is present in the corresponding software
product, and −fi an absent one. A configuration is said to be valid if K is satisfied, i.e., all the
constraints of the FM are simultaneously satisfied. Otherwise, it is said to be invalid. When a
configuration is valid, we also that it satisfies the FM.

For instance, with respect to Figure 2.1, C = {+f1,+f2,+f3,+f4,+f5,−f6,+f7,−f8,+f9} is the
configuration of the software product proposing all the features except rectangular selection and black
and white rendering. This configuration is valid since it satisfies the constraints of the FM described
in the previous subsection. On the contrary, C ′ = {+f1,−f2,+f3,+f4,+f5,−f6,+f7,−f8,+f9}
violates the constraint (f1 ∨ f2) and is thus invalid.

A configuration may actually refer to different things depending on the source of the features. While
in the SPL terminology it usually refers to the configuration of a software product of the SPL, where
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Chapter 2. Technical background and definitions

each of its features may have a complex behavior, it may as well represent parameter values if the FM
is a configurable system, e.g., the Linux kernel. This is not a problem in our case since the approaches
described in this dissertation agnostic of feature semantics [CHS08]. Regarding the SPL testing
process, these configurations need to be embodied and relevant test cases for these configurations
have be provided so that actual testing can be performed. The full process is out of the scope of this
dissertation. Nevertheless, model-based product configuration generation techniques show that this
scenario is realistic even for large systems [JHF+12c].

2.1.3.1 On the validity of configurations

To decide whether a configuration is valid or invalid (with respect to the constraints of the FM), the
Boolean formula of the FM is encoded into a SAT solver. Since the formula is a conjunction between
all the constraints,this formula can be evaluated to true only when all the constraints are satisfied.
Thus, since a configuration is the list of selected (true) and unselected (false) features, it represents
a specific assignment of the formula variables. A configuration is valid when the formula is evaluated
to true by the constraint solver.

Unless specified using the terms valid and invalid, the remainder of this dissertation uses the
terminology configuration to refer to a valid configuration. Indeed, from a practical testing perspective,
invalid configurations are useless in practice as they may lead to faulty software products.

2.1.3.2 Configuration suite

We finally denote as configuration suite a set of configurations. Such configuration suites are the
results expected from the generation approaches presented in Parts I and II.

Definition 3 (Configuration suite) A configuration suite is a set CS = {C1, ..., Cm} where each
Ci is a valid configuration and where the order of the configurations is not important.

2.1.3.3 Modeling the testing cost of configurations

In an attempt to take into account the testing cost of configurations, some assumptions are made.
We assume that the testing effort of each configuration is related to the number of features that it
contains. Additionally, each feature requires a different amount of resources in order to be tested. To
this end, a value representing an estimate of its testing cost is assigned to each feature. Thus, the
cost of testing one configuration is assumed to be equal to the sum of the cost of the features that
it is composed of. More formally, if cost(fi) denotes the cost of the feature fi, the a configuration
C = {±f1, ...,±fn} has a cost cost equals to:

cost(C) =
n∑

i=1
p(i)cost(i), where p(i) =

{
1 if + fi

0 if − fi
.

The cost of a test configuration suite is the sum of the cost of the m configurations that it is composed
of. Thus, the cost of CS = {C1, ..., Cm} is given by:

cost(CS) =
m∑

i=1
cost(Ci).
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Putting a cost to each feature transforms the initial FM into an attributed FM [OSCR12]. A similar
way of representing the cost of features and configurations can be found in the work of Olaechea et
al. [OSCR12].

2.1.4 Mutation analysis

Mutation analysis forms a powerful technique with various applications like software testing [JH11,
Off11] and debugging [PLT12]. It is applied by creating altered (mutant) versions of the various
programs’ artifacts like source code, specification models, etc. [JH11, Off11]. The main idea behind
this approach is to evaluate the ability of test cases to reveal behavior differences between the original
(unaltered) and the mutated (altered) artifact versions. The mutated versions represent possible
defects of the artifact under test and they are produced based on a set of well defined rules called
mutation operators [Off11].

Mutation operators are defined on “syntactic descriptions to make syntactic changes to the syntax or
objects developed from the syntax” [Off11]. The process of introducing mutants is called mutation
analysis. The ability of the utilized test cases to reveal the introduced mutants is examined in order
to use this approach for testing purposes (mutation testing). If a mutant can be detected by a test,
the mutant is called killed. Otherwise, it is called live. Therefore, measuring the ratio of the killed
mutants to the totally introduced ones results in a quality measure of the testing process. This
measure is called mutation score (MS) and demonstrates the ability of the tests to detect errors.

In the context of this dissertation, mutants are produced by applying a set of mutation operators to the
original FM. Such operators alter the logical constraints of the FM. The test evaluation is performed
by checking whether a configuration is valid towards the modified FMs’ constraints, i.e., whether the
modified Boolean formula is evaluated to true. Since the examined configurations are produced based
on the original FM, they always satisfy their respective Boolean formulas. Consequently, a mutant is
said to be killed if its formula is not satisfied, i.e. if the formula is evaluated to false.

2.2 Combinatorial interaction testing

In testing, CIT aims at sampling test suites in order to reduce the testing effort. This reduction is
achieved by keeping only the test cases covering all the interactions between t parameters. The level
of interaction or strength is generally denoted as t. T-wise testing refers to the process of applying
CIT with a strength t ≥ 2.

CIT approaches are closely related to the configuration generation in SPLs. Generally, CIT handles
multi-valued variables while configuration generation for SPLs limits the values of variables, i.e., the
features, to Boolean ones. In that sense, the generation of configurations in SPLs can be seen as a
subset of CIT. However, constraints among variables are generally not included in CIT problems.
Indeed, initial CIT approaches did not take into account constraints. Some recent studies, e.g.,
[CDS07, Pet15] evaluate the impact of constraints on CIT. Recent CIT tools provide a support of
constraints. In other words, we can say that configuration generation in SPL testing is an instance
of a Boolean CIT problem with constraints. The following mapping between the terminology can
be used: test suites of CIT are configuration suites and the parameters of CIT are the features of
SPLs.

Generally, a SPL configuration generation problem can be solved by a CIT tool if it handles constraints.
Indeed, CIT with constraints generalizes the SPL configuration generation problem since it deals
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with multi-valued variables. However, to convert a CIT problem to a SPL one, it is necessary to
transform the problem into a Boolean one. If the variables’ domain is finite, this transformation can
be performed by applying the rules presented by Frisch et al. [FPDN05].

2.2.1 T-wise testing and coverage

T-wise testing focuses on the interactions between any t ≥ 2 features of a SPL [PSK+10]. It considers
all the possible interactions (with respect to the constraints K of the FM) between selected and
unselected features. Such an interaction is called a t-set.

Definition 4 (valid t-set) A valid t-set is a set {±f1, ...,±ft} satisfying K, with t ≤ n and where
+fi indicates a feature which is selected and −fi an unselected one. A t-set which is not satisfying K
is said to be invalid.

As a result, a t-set can be seen as a partial configuration, and their validity or invalidity is evaluated
in a similar way as previously described in Section 2.1.3.1.

Definition 5 (t-wise coverage) The t-wise coverage of a configuration suite CS = C1, ..., Cm is

defined by the following ratio:
#

m⋃
i=1

Tt,Ci

#Tt,F M
, where Tt,Ci

is the set of t-sets covered by the configuration

Ci (i.e., t-sets included within the configuration Ci), where Tt,F M denotes the set of all the possible
t-sets of the FM and where #A denotes the cardinality of the set A.

Classical approaches [OMR10, POS+12, JHF11] to t-wise testing have coverage ratio of 1 as they
cover all the t-sets of the FM. Finally, set coverage redundancy expresses the possibility that, by
removing any configuration, the coverage value is not altered.

As an example, consider the FM depicted in Figure 2.1 and the following configurations:

C1 = {+f1,+f2,+f3,+f4,+f5,−f6,+f7,−f8,+f9},
C2 = {+f1,+f2,+f3,+f4,+f5,+f6,−f7,−f8,+f9},
C3 = {+f1,+f2,+f3,+f4,+f5,+f6,+f7,−f8,+f9},
C4 = {+f1,+f2,+f3,−f4,+f5,+f6,−f7,+f8,−f9}.

The t-sets of this FM can be computed as follows. Compute all the possible t combinations from
{+f1, ...,+f9,−f1, ...,−f9}. Then, remove the combinations that are invalid. An example of valid
3-set is {+f1,+f2,−f8}. An invalid 2-set is for instance {−f1, f2}, as it does not satisfies the
constraint −f2 ∨+f1. Thus, the example FM encompasses 73 valid 2-sets, 204 valid 3-sets, etc. C1
and C4 together cover 66/73 ≈ 90.4% of these 2-sets and ≈ 80.4% of the 3-sets. On the contrary, C2
and C3 together cover only ≈ 60.3% of the 2-sets and ≈ 54.9% of the 3-sets.

2.2.2 The impact of constraints

Constraints have a great influence: they can, as described in the previous sections, make configurations
invalid. They may also increase or decrease the number of configurations required to cover all the
t-wise interactions, or produce invalid t-sets [CDS07]. Thus, introducing constraints into a CIT

16



2.3. Optimization problems

problem makes it extremely difficult to solve. This is due to the irregularity introduced by the
constraints [CDS07]. The configuration generation in SPLs suffers from the same problems.

As an example, consider the SPL depicted by the FM of Figure 2.1. In the absence of constraints,
29 = 512 configurations can be established (9 features, with 2 possible values per feature). However,
there are configurations among these 512 that are invalid with respect to the constraints. Taking into
accounts the constraints drops the number of configurations to 4 only (i.e., this SPL supports only
4 configurations). In other words, only 4 configurations among the 512 possible are valid ones. It
means that, by trying to randomly generate a configuration, the probability to obtain a valid one is
only 4/512 = 0.78%. As a result, generating valid configurations at random is rather unlikely, even
for small SPLs. Thus, a systematic way to deal with valid configurations is in need. To deal with this
situation, a SAT solver [LBP10] to handle the constraints of the FM is mandatory.

2.2.3 Combinatorial interaction testing models

CIT models can be seen as a generalization of feature models, where the variables can take multiple
values from a finite set instead of Boolean ones. In this dissertation, we consider CIT models with
constraints expressed in a similar ways as those of FMs.

2.3 Optimization problems

Optimization problems fall into two categories: problems that can be solved with an exact technique
in a reasonable amount of time, and the others, which require the introduction of metaheuristics to
find near-optimal solutions.

2.3.1 Metaheuristics

Metaheuristics are used when the solution space is extremely large, making it practically impossible
to evaluate all the solutions to find the best one, and where there is no known efficient technique
to find the exact best solution. The general idea is, in such cases, to find approximate solutions by
defining a way to decide which potential solution is the best among two. Two potential solutions are
in this case compared in terms of fitness, noted f , and the objective is to find the best solutions
according to that fitness.

2.3.2 Search-based software engineering

Search-based software engineering (SBSE) [HMZ12] denotes a family of techniques which
convert a software engineering problem into a computational search problem which can be tackled
with a metaheuristic. One of the most famous metaheuristic category in SSBSE is evolutionary
algorithms, which encompasses genetic algorithms.
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2.3.2.1 Genetic algorithms

Genetic algorithms form search-based heuristics mimicking the natural evolution process. They
represent a smart way to randomly search for solutions to optimization problems. To apply such an
approach, several parameters like the genes, the individuals and the fitness function have to be defined.
The individuals correspond to what composes a possible solution to the optimization problem. Each
individual is composed of several units, called genes and the set of individuals that is handled by the
algorithm is called the population. The fitness function quantifies the individuals’ ability to solve
the optimization problem. Generally, these algorithms operate by repeatedly reproducing, adjusting
and selecting the best individuals of the population. Based on the process presented in the following
subsection, the population is gradually evolved by optimizing the solutions it encodes.

The process. Genetic algorithms operate by evolving a population of potential solutions called
individuals. The evolution is guided by a fitness function. The initial population is usually produced at
random and evolved based on a given set of operations on its individuals. Usually, three operations are
used for the evolution of the population. These are the selection, crossover and mutation [HM10].

1. Selection chooses individuals for performing crossover and mutation. The selection is made by
choosing the individuals with the best scores according to the fitness function.

2. Crossover selects two individuals and switches some of their genes. This is usually performed
by ordering the individuals’ genes and switching all the genes after a randomly selected point.
Crossover results into two new individuals called offsprings.

3. Mutation performs on an offspring by changing the values of one or more of its genes.

Performing the selection, crossover and mutation operations on a population results in one evolution
cycle of the population. This cycle is called population generation. At each generation, the individuals
that fit the best to the problem, i.e., which have the best fitness, are kept. This principle is adapted
from the Darwin’s theory of evolution, i.e., survival of the fittest. An overview of one generation
is presented in Figure 2.2. The algorithm terminates after completing a predefined number of
generations.

Population

Generation i

Population

Generation i+1

1. Selection

2. Crossover

3. Mutation

Gene

Individual 

Figure 2.2: The process of evolving a population in genetic algorithms. The current population is evolved
into a new one by selecting, crossing and mutating individuals.
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2.3.3 Multi-objective optimization

Multi-objective optimization (MOO) refers to the process of optimizing more than one objective
at the same time. The aim of these approaches is to search for optimal (or nearly optimal) solutions
requiring trade-offs between two or more conflicting objectives.

Let X be the set of all the possible solutions to a problem and let F = [F1(x), ..., Fk(x)]T be a vector
of k objective functions. If each objective has to be minimized, MOO aims at finding x1, ..., xk,
i.e., the solutions to the problem, such as F is minimized. The minimization of F is the process of
optimizing simultaneously the k objective functions [MA04]. The terms objective function and fitness
function are similar, but generally fitness is used for single-objective optimization while objective is
used for MOO problems. Finally, multi-objective evolutionary algorithms denotes a set of evolutionary
techniques used to solve MOO problems.

2.3.3.1 Pareto front

Let x1 and x2 be two potential solutions to a MOO problem. We say that x1 dominates x2, written
as x1 � x2 if and only if ∀i ∈ {1, ..., k}Fi(x1) ≤ Fi(x2) and ∃i ∈ {1, ..., k}Fi(x1) < Fi(x2). Given
x1, ..., xn potential solutions to the MOO problem, the Pareto front (PF) corresponds to the subset
of these potential solutions that are non-dominated by the others.

An example of PF is illustrated by Figure 2.3 for two objectives F1 and F2 to minimize. In this
example, x1, x2, x4, x6 and x7 are in the PF set since they are not dominated by any other solution.
By contrast, x10 is dominated (among others) by x2 (x2 � x10). So, it does not lie on the front.
Finally, we denote as PF size the number of solutions in the PF.

2.3.4 Configuration generation and prioritization

This section defines configuration generation and prioritization as used in this dissertation.

Solutions

Pareto front

Figure 2.3: An example of Pareto front with two objectives F1 and F2 to minimize. The solutions x1, x2, x4, x6
and x7 are in the Pareto front since they are not dominated by any other solution.
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Definition 6 (Configuration generation) The objective of the generation process is to provide a
configuration suite that fulfills the requirements of a test criterion. If X denotes the set of all the
configurations (i.e., solutions) and CS = {C1, ..., Cm} a configuration suite, this process is formally
defined as:

• Given: a FM, the desired number of configurations, m, a given amount of time, at, and a fitness
function f from CS to the real numbers, f : Cm −→ R+.

• Problem: finding CS ∈ Cm with respect to at such as [max(f(CS))].

In the present context, the testing criterion is modeled by a fitness function f . In this dissertation,
we will use the t-wise coverage or the mutation score as test criteria.

Definition 7 (Configuration prioritization) The aim of this process is to order a configuration
suite CS = {C1, ..., Cm} according to their ability to fulfill the test criterion. Therefore, by testing
k ≤ m configurations, the greatest possible level of f , for any number of k configurations, is achieved.
More formally [YH12]:

• Given: a configuration suite, CS, the set of all the permutations of CS, PCS and a fitness
function f from PCS to the real numbers, f : PCS −→ R+.

• Problem: finding CS′ ∈ PCS such as (∀CS′′ ∈ PCS | CS′′ 6= CS′)[f(CS′) ≥ f(CS′′)].

In this dissertation, the testing criterion model by f for prioritization is the t-wise coverage.

As an example, consider the FM of Figure 2.1 and the following configurations:

C1 = {+f1,+f2,+f3,+f4,+f5,−f6,+f7,−f8,+f9},
C2 = {+f1,+f2,+f3,+f4,+f5,+f6,−f7,−f8,+f9},
C3 = {+f1,+f2,+f3,+f4,+f5,+f6,+f7,−f8,+f9},
C4 = {+f1,+f2,+f3,−f4,+f5,+f6,−f7,+f8,−f9}.

In this example, if m = 2 (i.e., 2 configurations have to be generated), we expect them to be those
that provide the maximum coverage. Therefore, with respect to Section 2.2.1, C1 and C4 should be
chosen rather than C2 and C3, as they cover more t-sets.

Suppose now that we have only the three configurations C1, C2 and C3 that we want to prioritize.
All together, they provide a 2-wise coverage of ≈ 71.2%. C1 alone provides a 2-wise coverage of
≈ 49.3%. If we now consider C2 in addition to C1, it increases the coverage to ≈ 69.8%. However,
if we consider C3 in addition to C1, the coverage is extended to only ≈ 60.2%. This difference is
depicted in Figure 2.4. In other words, the order in which the configurations are considered allows
reaching faster or slower the total coverage of ≈ 71.2% provided by these configurations. In this case,
it is more interesting to consider the order C1, C2 and C3 rather than the order C1, C3 and C2.
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Figure 2.4: A different ordering of the configurations allows reaching faster or slower the t-wise coverage
provided by these configurations.
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Area under curve. The experiments conducted in this dissertation for evaluating prioritization
techniques make use of the area under curve notion. According to Do and Rothermel [DR06], “the
area under the curve represents the weighted average of the percentage of faults detected over the life
of the test suite. This area is the prioritized test suite’s average percentage faults detected metric .”
In this dissertation, we measure the t-wise coverage instead of the percentage of faults. Hence, the
area under curve represents the effectiveness of the studied approaches. This area is the numerical
approximation of the integral of the discrete coverage curve and is computed using the trapezoidal

rule, i.e.,
∫ b

a

g(x)dx ≈ (b− a)g(a) + g(b)
2 . Thus, for each prioritization method, if cov(x) denotes the

percentage of t-wise coverage achieved with the x-th configuration, then the area value is given by
99∑

i=1

cov(i) + cov(i+ 1)
2 . A higher area under curve value expresses a more effective prioritization.

For instance, with reference to Figure 2.4, we can see that the area below the ordering C1, C2 and C3
is bigger than the area below C1, C3 and C2, thus indicating a more effective prioritization.





3
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This chapter discusses work related to the one presented in this dissertation.
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Chapter 3. Related work

3.1 Configuration generation and prioritization

This section discusses work related to the generation and prioritization of configurations, which is
mainly related to Part II and Part III.

3.1.1 T-wise generation

SPL t-wise testing approaches typically fall into two categories: constraint-based and search-based.

3.1.1.1 Constraint-based approaches

Since t-wise testing is difficult due to the presence of constraints, the use of constraint solving solutions
have been investigated. In [CDS07], Cohen et al. examine the impacts of constraints and present
techniques to integrate constraints handling into existing CIT tools. In Perrouin et al. work [PSK+10],
a solution based on Alloy, a SAT solver, was devised. The approach was non-predictable in terms
of generated solutions and strategies to improve scalability were proposed. Oster et al. [OMR10]
optimized the problem upfront by flattening the FM and using CIT algorithms [CDFP97, LT98] within
a dedicated constraint solver, producing predictable solutions. Both cannot handle thousand-sized
FMs.

Recently, SPLCAT [JHF11], used as a reference in Chapter 4 has been proposed. SPLCAT operates
by generating a covering array [CDS07]. In a covering array, the rows represent the configurations
while the columns represent the features. The approach is incremental and adds configurations (rows)
until all the feature combinations are covered. Each configuration added in the array tries to exercise
the maximum number of interactions that remain to be covered. This is performed using a SAT
solver which, given assumptions representing the interactions to be covered, returns a configuration.
Configurations are added until all the interactions of the FM are covered. The generation technique
introduced in Chapter 4 tries to maximize the dissimilarity of set of n configurations, where n is
predefined. Thus, SPLCAT generate all the configurations needed to achieve 100% of t-wise coverage.
On the contrary, our approach aims at maximizing the t-wise coverage of the n configurations.
SPLCAT handles larger FMs than the other techniques, but it does not scale well. An improvement of
SPLCAT has been recently proposed [JHF12a]: it handles larger FMs tha SPLCAT but it is limited
to t = 3.

Logic was also used. Calvagna et al. explain how to deal with constraints in CIT [CG08] by encoding
them in first order logic. They offer various reduction algorithms to simplify them and used a model
checker to solve them. Since this work was not related to FMs, it is difficult to assess its scalability.
Hervieu et al. [HBG11] also use reduction techniques in the aim of finding the minimal test suite
in a Prolog-based implementation. However, this approach does not scale well to FMs of over 200
features, according to our experiments.

Cohen et al. [CDS06] proposed a relational model to represent the semantic basis for defining a
family of coverage criteria for testing a SPL, such as variability coverage. CIT is then used to
generate configurations that achieve a desired level of coverage. In our work, we focus on the notion
of t-wise interaction coverage while generating configurations. The testing of the SPL itself is not
considered. Finally, characterizing the features combinations responsible for failures can be performed
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with classification trees [YCP06]. This is part of debugging and thus falls out of the scope of the
present dissertation.

3.1.1.2 Search-based approaches

Search-based techniques, or more generally metaheuristic searchs have been shown to be an effective
approach to solve the test cases generation problem. To this end, the test cases generation problem
is reexpressed a search one. In that context, Ali et al. [ABHPW10] performed a systematic review
on search-based approaches for testing. While underlying the limitations of these approaches, they
conclude that search-based approaches are promising for coping with test cases generation problems.

Due to the computational complexity of t-wise testing of SPLs, using search-based heuristics is an
option. However, we are only aware of two approaches [GCD11, EBG12]. Garvin et al. [GCD11]
report on their experience applying and improving an extension to the AETG algorithm [CDFP97]
using simulated annealing. The simulated annealing approach incrementally populates a constrained
covering array [CDS07]. Here, each change to the value of the features is controlled by a SAT solver
to ensure it is legal with respect to the FM constraints. Changes are guided by a fitness function
defined over the remaining pairs to be covered: the fewer pairs to be covered, the lower the probability
to make a change.

As it is shown in Section 4.3.1 of Chapter 4, using t-wise coverage as a fitness function induces
scalability issues which may be intractable for very large FMs or high t values. Similarly to ours, Ensan
et al. devised a genetic algorithm approach to generate SPL test configuration suites [EBG12]. They
propose an approach where each gene is a feature to be mutated and where crossover is applied. The
crossover induces possible invalid products which need to be removed and thus they face scalability
issues. Their fitness function indirectly measures coverage by evaluating the variability points to
be bound and the constraints concerned by the features of a configuration. On the contrary, our
approach copes better with large FMs ([EBG12] does not scale over 300 features) and does not
produce invalid configurations (since a configuration is always replaced as a whole). As opposed to
other approaches, Ensan et al. and our approaches yield partial t-wise coverage due to the choice of
the fitness function. This, however, allows dealing with time and cost constraints, looking for a “good
enough” solution. Rubenstein et al. [ROZ97] proposes an algorithm that performs a search until
some point in time in the context of software systems analysis. They use a measure for the accuracy
of the analysis, which is also used to decide when to stop the process. This measure can be seen as
the fitness function in our work. The difference with our approach is that the fitness function only
evaluates the quality of the proposed solution, but does not indicate when to stop the algorithm. In
our context, the stopping criteria is the time budget allowed.

Besides, the variations in space (different configurations one can form from the FM) but also in time
(product versioning) have been investigated in some work [MI07, RE12]. In this work, we focus only
on configuration space variations since we only consider one version of the SPL. Our approach can be
adapted in the context of different version of a SPL by focusing only on the features that changed
from one version to the other. Section 4.6.3 gives more details about the adaptation of our approach
to SPLs evolving over time. Surveys [ER11, DMSNCMM+11] report that SPL testing goes beyond
the configuration generation. We do not strive to cover the full SPL testing process. Indeed, we focus
on scalable configuration generation, an open research issue [AB12, GOA05, NL11]. An exact solving
technique can only be used for moderate size search spaces. In this dissertation, we focus on larger
SPLs where the configuration space cannot be fully explored.

Generating configurations based on mutation of the FM, as presented in Chapter 5, is the first
approach to do so. It is based on a simple hill-climbing-based approach in conjunction with a SAT
solver. The configuration generation process is guided by the MS. Mutation has been widely used for
the purpose of testing and test generation, e.g., [HJL11, FZ12]. In our work, we used FMs represented
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as Boolean formulas from which we created mutants. There are several work who investigated the
mutation of logic formulas. For instance, Gargantini and Fraser devised a technique to generate
tests for possible faults of Boolean expressions [GF11]. More details regarding mutation are given in
Section 3.2.1.

Finally, there is work focusing on test case generation for each software product, e.g., [NFLTJ04,
NTJ06, NPLTJ03, XCMR13]. In this dissertation, we only generate configurations of the software
products, not the actual test cases to test them.

3.1.1.3 Prioritization

As surveyed by Nie and Leung [NL11], efforts have been made to prioritize test suites. For instance,
Bryce and Colbourn [BC07] use search-based techniques (e.g., hill climbing) to select the “best
test” in terms of t-wise coverage. Our goal is similar but we focus on configurations. Additionally,
the proposed techniques offer improvements over the “natural” ordering provided by the AETG
algorithm [CDFP97] in line with our experimentations. However, computing t-wise coverage for each
configuration is expensive, especially for constrained cases, which are not taken into account in their
approach and thus unsuitable in the SPL context. There are also work in the context of regression
testing, e.g., [QCR08].

Yoo et al. [YHTS09] introduced a cluster-based prioritization technique to reduce the number of
2-wise interactions. The idea is too regroup similar test cases into clusters, and prioritize the clusters.
In our work, we use a notion of similarity to compare test configurations. Prioritization of test
configurations according to parameter interactions has also been done by Sampath et al. [SBV+08]
in the context of web applications. Bryce and Memon [BM07] proposed a technique to prioritize
configurations according to the t-wise interactions covered. It is a greedy approach which selects
the configurations exercising the maximum number of interactions that are not already covered.
The difference is that our approaches are not impacted by the t-wise interactions since they are
independent of t. Indeed, our techniques select the most dissimilar configurations instead of those
covering the highest number of interactions. Other work [BSPM11] also adds the notion of cost of
the test to the combinatorial interaction coverage metric. In our work, we focus only on the t-wise
interactions, assuming that all the configurations have the same cost. Finally, there are SPL-dedicated
efforts, also in the context of test generation, but not directed to t-wise, such as Uzuncaova et al.
[UKB10] work.

3.1.2 Multi-objective approaches

This section discusses first the related approaches that handle many objectives, then few objectives
and finally the use of search approaches in software engineering.

One of the first approaches that aimed to optimize multiple configuration goals is attributed to
Olaechea et al. [OSCR12]. This method uses a special form of FMs, called attributed FMs which
record quality attributes for the features. This technique uses exact solving and consider FMs with
one to three objectives. However, it fails to scale due to the computation of the exhaustive search it
performs. The authors used FMs with up to 12 features. Sayyad et al. [SMA13] proposed the use of
advanced multi-objective evolutionary algorithms for SPLs with five objectives to optimize. They
experiment with five algorithms and conclude that the indicator-based evolutionary algorithm
(IBEA) is the most suitable one for the SPL context. Sayyad et al. were the first, to the authors
knowledge, to use constraint violation as an objective for the search process. This approach was later
extended by Sayyad et al. [SIMA13b] with the aim of scaling to large SPLs. It is this technique, i.e.,
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IBEA, that is investigated by Chapter 6. However, as shown by our results, the proposed techniques,
our approaches are by far more effective.

Most of the existing approaches generate configurations that conform to the FM constraints while
optimizing a single other objective. Benavides et al. [BTRC05] imposed constraints modeling
extra-functional properties of the SPL features. They then applied constraint satisfaction solvers to
generate all the possible configurations, the optimal ones etc. Another attempt to optimize the extra-
functional properties of configurations was by White et al. [WDS09]. They proposed to transform
the configuration problem into a multi-dimensional multi-choice knapsack problem to use known
techniques to tackle it. White et al. [WGS+14] developed a tool for the multi-step configuration of
evolving FMs. They show that it is possible to derive configurations automatically by mapping the
SPL configuration problem to a constraint satisfaction one. Aiming at t-wise coverage, Perrouin et al.
[PSK+10] developed a tool based on the Alloy SAT solver. Other work, e.g., [HPP+13a, HPP+13d]
used a SAT solver to generate valid set of configurations. Unlike the methods presented in Part III,
these approaches optimize only a single objective, i.e., either the t-wise coverage or some form of
attribute coverage. Furthermore, these approaches fail to scale to large FMs.

Perhaps the closest work to the one presented in Part III is the one of Guo et al. [GWW+11]. Guo et
al. propose the use of a genetic algorithm to tackle multiple objectives. To achieve this, it aggregates
all objectives into one, thus using a single fitness function. This practice fails to produce a wide range
of configurations and results in a single configuration that is only optimized for a specific objective
weighting scheme. Additionally, it uses a repair process to make the candidate solutions valid with
respect to the constraints of the FM. This process restricts the search process [SMA13]. Since it was
evaluated on artificial models and thus, it is currently unclear whether it can provide satisfactory
solutions for real word FMs. Our study involves the satisfaction of multiple objectives for large,
heavily constrained and real-world FMs such as the Linux kernel.

Finally, regarding evolutionary algorithms, Konak et al. [KCS06] proposed a tutorial on the use of
these kind of methods for multi-objective optimization purposes. Ensan et al. [EBG12] proposed
a genetic algorithm approach where each gene is a feature. The crossover can thus produce invalid
products. Furthermore, the explored space may contain invalid products. Their fitness function
measures coverage by evaluating the variability points to be bound and the constraints concerned by
the features of a product. In our approach, we use a SAT solver to only explore the space containing
products valid towards the FM. The modeling of genes is performed at the product level and the
crossover and mutation operators introduced avoid the introduction of invalid products.

3.1.3 Generating configurations from a feature model with constraint solvers

Approaches for the automated analysis of FMs have proliferated these last 20 years [BSRC10]. Such
techniques enable to extract information from the FM, such as identifying the mandatory features or
count the valid configurations of a SPL. These techniques rely on binary decision diagrams or solvers,
such as SAT or satisfiability modulo theory (SMT) solvers [DMB11]. The efficiency of these
techniques has been investigated by Pohl et al. [PLP11] with the conclusion that these approaches
induce a certain overhead and that there is still room for improvement. The use of SAT solvers
for reasoning on FMs has been reported as being an easy task [MWC09]. In this work the authors
conclude that the previous reports on the efficiency of SAT solvers is not incidental in practice. The
FMs used in this work are extracted from existing code such as the Linux kernel. To the best of our
knowledge, the efficiency of automated analysis techniques have not been investigated on such models.
Finally, augmenting the features of FMs with quality attributes such as cost, as performed in Chapter
7 has been used in several previous studies, e.g., [SMA13, SIMA13b, OSCR12, HPP+13c, ZYL11].
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3.2 Configuration evaluation and mutation

In this section, existing techniques used for evaluating configuration along with mutation analysis are
discussed.

3.2.1 Mutation analysis

Mutation analysis is a powerful technique with multiple applications [Off11, JH11]. Generally, code-
based mutants have been used to guide the test generation process [PM11, PM12, FZ12], to assist
the debugging activities [PLT13, PLT12] and to evaluate the fault detection ability of a test suite
[GGZ+13, ABLN06]. The technique has also been applied to test specification models [JH11] and to
capture semantic errors of the programs [CDH13]. For instance, Mottu et al. used mutation to test
model transformations [MBLT06]. Other applications of this technique include Petri nets [FMM+96]
or security policies metamodels [MFB08].

Contrary to the above-mentioned work, the present dissertation applies mutation analysis to the FM as
performed in Chapter 8 or to a model of the program inputs, then measuring the correlation between
model-based mutants and code-based faults (Chapter 9). The Kendall coefficient used in Chapter 9
has been used in several work to measure the the correlation between two measured quantities. For
instance, Gligoric et al. [GGZ+13] performed a correlation analysis using this coefficient in order to
evaluate the relationship between coverages and MS. In this work, we perform a correlation analysis
by measuring the Kendall τ between a) the number of input parameter interactions covered by a
given test suite and b) the number of the introduced mutants distinguished by the test suite with its
actual fault detection.

Considering Boolean specifications, mutation faults have been used to select minimum test suites
[GF11]. Similarly, Kaminski et al. [KPAO11] use a logic mutation approach to measure test data
quality. Their approach relies on the notion of higher order mutants [JH09] and aim at improving
logic-based testing. In another work, Kaminski et al. [KAO13] target at augmenting logic-based
criteria inspired by the mutation approach. Contrary to these approaches, we apply mutation on
the logic underlying these models. Andrews et al. showed that generated mutants can be used to
predict the detection effectiveness of real faults [ABLN06]. They investigate the relative cost and
effectiveness of different testing coverage criteria. Contrary to Just et al. [JJI+14], we do not focus
on whether or not the generated mutants of the model are representative of real defects.

3.2.2 Fault detection ability

Most of the work on SPL testing was focused on providing scalable and efficient test generation
techniques but less attention has been devoted to the evaluation of the bug detection ability of
generated test suites, motivating this research. In [SOLF12], Steffens et al. provide an industrial
account on the actual detection ability of t-wise techniques, showing that they actually detect bugs.
Johansen et al. [JHF+12c] applied such techniques on the Eclipse development environment and
exhibited some interaction problems. Both did not consider issues occurring in the FM itself. Ensan
et al. [EBG12] developed an fault injection tool which associate errors to construct of the FM such
as individual features, groups or constraints. This fault injection tool aims at simulating actual issues
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found in practice. To the best of our knowledge, our approach presented in Chapter 8 is the first to
evaluate the ability of dissimilar test suites to detect FMs errors.

CIT is a well researched technique with multiple criteria and combination strategies [GOA05]. However,
very few work consider the fault detection ability of CIT, e.g., [PYCH13, KWG04, CDS08, GLOA06,
SNX05, BM07]. In the most recent one, Petke et al. [PYCH13] show that higher t strengths result
in finding more faults than lower strengths. Our work differs from this one in three ways. First, we
use mutation while they only consider t-wise. Second, we consider the correlation between faults and
t-wise interactions. They only investigate whether covering higher interaction strengths results in
higher fault detection. Third, we use randomly selected test suites while they use test suites selected
with a covering array tool [CCL03]. Similarly, Arcuri and Briand [AB12] showed that random testing
can perform similarly to CIT on large-scale models. However, their results hold only in the case
where there are no input constraints.

3.3 Reverse-engineering and re-engineering software product lines

This section discusses work related to our contributions presented in Part V.

3.3.1 Extracting a software product line

Whether extracting a product line is useful or not has been assessed in [BRR10]. In this work, Berger
et al. investigated the assessment of SPVs to extract a product line. They propose a set of metrics
that enable the software architects and project managers to estimate whether it is beneficial or not
to construct a product line. This approach is complementary to our and can be done as a prior step
to our approach.

There are few work related to the extraction of a SPL from the source code of SPVs. Yoshimura et
al. [YNHK08] propose an algorithm to detect variability across the source code of a collection of
existing products. This method only extracts factors to specify the variability. In [KK12], Klatt et
al. propose ay reverse-engineering process for variability. This work also abstracts input SPVs using
abstract syntax tree models. The extraction of the SPL implementation is not considered in these
studies.

Zhang et al. [ZB13] present a framework for re-engineering variability. However, this work only focus
on the extraction of variability from the source code with conditional compilation directives. Xi et al.
[XXJ12] propose an approach based on formal analysis concept for the identification of code units
that are associated with a set of existing features. Indeed, in addition to the source code of SPVs,
this approach also takes as input data the list of features associated to each product variant. It then
tries to locate the code units associated to each feature. The difference between this work and our
approach presented in Chapter 10 is that ExtractorPL only considers the source code of the SPVs as
input data, without any additional information.

To the best of our knowledge, there is no work related to the extraction of a full implementation of a
SPL from the source code of SPVs, i.e. a SPL which allows to generate and compose the code of the
extracted features as long as proposing a FM. There are some existing extractive approaches that only
consider the feature identification step, e.g. [SLB+11]. In this case, a FM with constraints is extracted.
In our approach, we build a FM without constraints, but we propose the full implementation of the
SPL.
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Extracting the variability from other assets than source code has been investigated in several work, e.g.,
[DDH+13]. In [RC12], Rubin et al. propose an approach to extract a product line from architectural
artifacts. Frenzel et al. [FKBA07] use the reflexion method to refactor a collection of product
architectures into a SPL architecture. In their work, variability is specified using annotations. In
[ACC+14], FMs are extracted from plugin dependencies and architecture fragments of SPVs. Yssel
et al. [RPK10] consider the extraction of FMs from a set of similar models that represent function
blocks, a kind of architectural models for embedded systems. ExtractorPL can be modified to use
architectural artifacts. Indeed, feature structure trees can be employed to abstract architectural
models [AKL09].

Finally, while ExtractorPL extracts a SPL from the source code of a set SPVs, Valente et al. [VBP12]
propose a semi-automatic approach where a SPL is extracted from a single software product.

3.3.2 Automated improvement and fixing of extracted software product lines

Efforts have been made to reverse-engineer FMs. She et al. introduced procedures [SLB+11] to
recover constructs such as mandatory features or implies edges to build graphs and provided ranking
heuristics to allow the modeler identifying the features hierarchy. In the same context, an approach
that builds FMs from the feature sets describing the system variants based on Evolutionary Algorithms
has been proposed [LHGB+12]. Acher et al. [ACC+11] focused on maintaining a link with the SPs
while reverse engineering FMs. They also took into account the architect’s knowledge to build FMs
consistent with the software architecture. The method presented in Chapter 11 of this dissertation
complements these approaches by introducing a way of validating the FM they provide. In addition,
our technique goes a step further by automatically fixing the inconsistencies it identifies.

To debug configurations, Hubaux et al. [XHSC12] proposed a fix-generation approach, called range
fix to prevent wrong configurations. Their strategy uses constraints solving to propose a list of valid
assignments for enabling features. This is done using an underlying model which contains the system
constraints. In [TSD+12], Tartler et al. presented an approach to find and fix defects contained in
implementations of configurations of large-scale systems. It is a diagnostic tool which aims at fixing
the code. In the same lines, Segura et al. [SGB+12] presented a framework for benchmarking and
testing on the analysis of FMs. This approach is able to automatically detect faults in the analysis
tools that operates on a FM. Our approach operates on the FM itself and aims at testing whether its
constraints are consistent, and if they are not, to fix them.

Search-based techniques have also been used to perform automatic program improvement. In [LH12],
Langdon et al. proposed an approach to improve the lines of code of a system. Based on a fitness
function and population of patches, they evolved the original code into a faster version while keeping
the semantic of the code at least unchanged or better. Similarly, in [LGDVFW12], Le Goues et al.
presented a scalable genetic cloud computing oriented technique to repair erroneous programs.
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4
Scalable t-wise generation and

prioritization of software
product line configurations

This chapter introduces scalable techniques for generating and prioritizing configurations for combi-
natorial testing. This is essential since existing approaches for t-wise testing fail at scaling to large
software product lines.

This chapter is based on the work that has been published in the two following papers:

• C Henard, M Papadakis, G Perrouin, J Klein, P Heymans, and Y Le Traon. Bypassing the
combinatorial explosion: Using similarity to generate and prioritize t-wise test configurations
for software product lines. IEEE Trans. Software Eng., 40(7):650–670, 2014

• Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le Traon. Pledge:
A product line editor and test generation tool. In Proceedings of the 17th International Software
Product Line Conference Co-located Workshops, SPLC ’13 Workshops, pages 126–129, New
York, NY, USA, 2013. ACM
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Chapter 4. Scalable t-wise generation and prioritization of software product line configurations

4.1 Introduction

CIT is one of the most famous criterion for generating configurations for SPLs. However, it is difficult
to apply on large and heavily constrained SPLs.

The scalability issues of combinatorial interaction testing. Computing all the t-wise interactions
in the presence of constraints, as it is the case for FMs, is a hard problem to solve [JHF11, PSK+10].
Although t-wise generation techniques from FMs have been greatly improved over the last years, they
still face scalability issues in the presence of constraints [AB12, GOA05, NL11]. Therefore, dealing with
large FMs such as those used in industry is still an open research issue. Furthermore, the CIT literature
points out the need for dealing with higher interaction strengths (t > 2) [KLK08, RSM+10, PYCH13].
Preliminary evidence shows that 3-wise interactions may commonly appear in SPL testing practice
[SOLF12] and that higher interaction strengths are important in achieving a higher fault detection
[PYCH13]. Additionally, the results of the present study show that state of the art CIT tools fail to
scale even on FMs of moderate size for high interaction strengths (t = 3, 4). Since such strengths may
remain out of reach, one may ask if it is possible to cope with these difficult situations by relaxing
the t-wise criterion. This leads us to the question of whether we can mimic t-wise configurations
generation, partially but efficiently while achieving decent coverage?

The need for prioritization. While t-wise testing drastically reduces the number of configurations to
consider, this number may still be too high to fit the budget allocated for SPL testing. For example,
2-wise coverage for the Linux FM (over 6,000 features) already requires 480 configurations to be
tested [JHF12a]. This observation is in line with Song et al. ’s [SPF12] motivation : since they
reported that key interactions may involve up to 7 option settings, full 7-wise coverage of a realistic
system (admitting such a computation is possible) may yield too many configurations to consider.
Therefore, being able to prioritize configurations is critical from a practical point of view.

Contributions of this chapter. The work presented in this chapter is motivated by the results of
Arcuri and Briand [AB12] who showed that, in the case of large models, random testing is competitive
with CIT for finding interaction faults. Hence, they suggest the use of random testing as a possible
way to circumvent the scalability issues of the CIT approaches. Unfortunately, real world applications
involve constraints between features and the results of Arcuri and Briand do not hold when constraints
are present.

We propose two approaches working with constraints capable of generating and prioritizing configu-
rations for CIT: (a) a randomized approach, named here as unpredictable, and (b) a SB technique.
Following the lines of Arcuri and Briand, we empirically investigate the probability of finding an
interaction failure for t = 2, ..., 6. Our SB approach efficiently generates valid configurations, i.e.,
respecting the constraints of the FM, for t-wise testing. The innovative part of the proposed approach
is that it is independent of t and able to operate on large and constrained models by both generating
and prioritizing configurations. The applicability of the proposed strategies is evaluated on both real
and generated FMs. Our approach stands up against the comparison with existing tools for small and
moderate FMs, while it is able to scale well to models with 6, 000 features for t up to 6. In summary,
the present chapter of this dissertation provides the following insights:

• We show that state of the art tools for CIT face severe scalability issues with large SPLs.

• We propose a randomized and a SB approach able to generate valid configurations for t-wise
testing for large SPLs.
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• We introduce two scalable configuration prioritization techniques.

• We perform a wide empirical study including FMs that contain more than 6,000 features.

The remainder of this chapter is organized as follows: Section 4.2 introduces the heuristic used by the
approaches. Sections 4.3 and 4.4 respectively detail the configuration generation and prioritization
techniques. Section 4.5 reports on the empirical study. Finally, Section 4.6 discusses the proposed
approaches before Section 4.7 concludes the chapter.

4.2 The similarity heuristic

Similarity is a heuristic used here to compare two configurations. In model-based testing, it has been
found that dissimilar test suites have a higher fault detection power than similar ones [HB10]. The
results presented in this chapter (see Section 4.5) suggest that two dissimilar configurations are more
likely to cover a greater number of valid t-sets than two similar ones.

In this context, we define a distance measure d between two configurations to evaluate their degree
of similarity. Since a configuration is considered as a set of selected or unselected features. Thus, a
straightforward distance measure is a set-based one, like the Jaccard distance [Jac01] or any other
set-based distance metrics such as the Dice or Anti Dice measures [HB10]. If C represents all the
possible configurations of a FM, the Jaccard distance is mathematically given by:

d :
C × C −→ [0, 1.0]

(Ci, Cj) 7−→ 1− #Ci ∩ Cj

#Ci ∪ Cj
.

The resulting distance varies between 0 and 1. More particularly, a distance equal to 1 indicates that
the two considered configurations are completely different. A distance equal to 0 denotes that the
two configurations are the same (redundant). It is noted that an unselected feature is also an element
of the set representing a configuration.

For instance, consider the following configurations of the FM of Figure 2.1:

C1 = {+f1,+f2,+f3,+f4,+f5,−f6,+f7,−f8,+f9},
C2 = {+f1,+f2,+f3,+f4,+f5,+f6,−f7,−f8,+f9},
C3 = {+f1,+f2,+f3,+f4,+f5,+f6,+f7,−f8,+f9},
C4 = {+f1,+f2,+f3,−f4,+f5,+f6,−f7,+f8,−f9}.

With these configurations, d(C1, C2) = 1− #{+f1,+f2,+f3,+f4,+f5,−f8,+f9}
#{+f1,+f2,+f3,+f4,+f5,−f6,+f6,−f7,+f7,−f8,+f9}

=

1− 7
11 ≈ 0.36 and d(C1, C4) ≈ 0.71. In this example, C1 and C2 are the most similar configurations

(they share the lowest distance), whereas C1 and C4 are the most dissimilar ones. Thus, if we had to
choose only two configurations, C1 and C4 would be the most likely to cover the greatest number of
t-sets according to the similarity heuristic.
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4.3 Configuration generation

In this section, we take benefit from the similarity heuristic to guide the generation of configurations.
In this context, we want to maximize the t-wise coverage achieved by the configuration suite CS with
a time t allowed for generating the configurations. Toward this direction, we introduce an approach,
based on the (1+1) Evolutionary Algorithm [DJW02]. Specifically, the configuration generation
problem is formulated as a SB one. The space of all the valid configurations is defined as the search
space. Thus, meta-heuristic techniques can be used in order to efficiently explore this space. In
view of this, similarity is used as a fitness function towards searching for configurations in this space.
It enables: (a) a computationally interesting approach, independent of t and (b) prioritizing the
generated configurations without necessitating much additional computation.

4.3.1 A similarity-based fitness function

Our intuition, which will be confirmed in Section 4.5, is that the similarity heuristic is a relevant choice
to define a fitness function f to evaluate a configuration suites. Thus, if we consider a configuration
suite of m configurations CS = C1, ..., Cm, f is formally defined as follows:

f : Cm −→ R+
C1, ..., Cm 7−→

∑m
j>i d(Ci, Cj).

For instance, with reference to Section 4.2, f(C1, C3, C4) = d(C1, C3) + d(C1, C4) + d(C3, C4) ≈ 1.53.
This function, which generalizes the similarity distances for m configurations, allows evaluating the
quality of a configuration suite in terms of t-wise coverage. Indeed, the information conveyed by
this function is: the higher the fitness value of the given configuration suite of m configurations, the
higher the distances between the configurations, resulting in a potentially higher t-wise coverage.

Although evaluating the exact coverage would be a natural choice for a fitness function, say fc, it would
be computationally expensive for such a use. Indeed, for each configuration, it requires computing all
the t-sets covered by this configuration. Consider a FM with n features and m configurations. If

(
n
k

)
denotes the binomial coefficient, fc requires to compute:

N = m

(
n

t

)
= mn!
t!(n− t)! (4.1)

t-sets to evaluate the coverage of the whole configuration suite, which represents N operations. On
the contrary, f requires N ′ =

(
m
2
)

= m(m− 1)
2 distances computation plus the sum evaluation, which

represents m additions.

We assume that 2 ≤ t� n. Therefore, the time required to compute one particular distance between
two given configurations is small compared to the coverage evaluation of these two configurations,
i.e., N � N ′. Indeed, f does not depend on t. We also assume that one will test fewer configurations
than the number of features, and thus that m� n. Especially, in a realistic and industrial context
(with large FMs), the testing process is usually subjected to time and budget limitations. It thus does
not allow testing as many configurations as features. It results that N � N ′ and even more while
t increases. Recall that we focus on t-wise, for high t-values. This fact implies a computationally
lower cost for f compared to fc. As a result, f is used as the fitness function for the configuration
generation.
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4.3.2 A search-based approach

Classical constraint-based t-wise techniques, e.g., [JHF12a], are unable to scale to large FMs and
to high values of t. This is mainly due to the number of t feature combinations. The proposed
approach, which is independent of t, is composed of two steps. The first one is the generation of
valid configurations using a SAT solver, and the second one is the configuration selection. The
search process is formed by iteratively repeating these two steps. A similar technique that combines
constraint solving and SB approaches in a scalable way has been proposed by Harman et al. [HJL11]
for mutation-based test generation.

4.3.2.1 Generating configurations

A SAT solver is used to produce valid configurations. Once a FM is converted into a Boolean formula
[MWC09], the solver can generate valid configurations. As a result, a search space containing only
valid configurations is formed.

Typically, a configuration is a satisfiable “model” for a given SAT solver [LBP10]. To this end, the
literals of the logical clauses (i.e., clauses represent the constraints of the FM) are assigned values.
If the constraints are satisfied, one configuration is returned. However, assignments to the literals
are done in a particular order which involves the following problem: no uniform exploration of the
space of all the valid configurations is possible. Indeed, the order used by the solver to parse the
logical clauses and literals enables their prediction. In that case, the approach always returns the
same solution in a deterministic way. As a result, the configurations enumeration is driven by the
order used by the solver.

To overcome this issue, and thus to get configurations in an unpredictable way, one solution is to
randomize how the solver parses the logical clauses and the literals and how it assigns values to
variables. It thus makes the solving process entirely randomized. It prevents predicting the next
configuration that will be returned. Additionally, it allows selecting configurations from the full space
instead of enumerating them in a predictable order. Since it enables the use of SB approaches in a
non-biased way, the unpredictable strategy forms a contribution of this chapter.

4.3.2.2 Selecting configurations

The objective is to generate a configuration suite CS of m configurations. The proposed approach
is formalized in Algorithm 1. Informally, the SB method starts by selecting m configurations in an
unpredictable way (lines 5 to 8). Then, these configurations are evaluated by the fitness function
f (line 11) and prioritized (line 12). The technique used to prioritize the configurations (line 12) is
presented in Section 4.4.2. These configurations define the initial list CS. Then, by using the distances
computed while evaluating f , the worst configuration is determined. The worst configuration is the
one which has the lowest participation in the fitness function. In other words, it is the last element
of CS (line 13). The next step consists of trying to replace this configuration by an unpredictable
one got from the solver (lines 14 to 16). This replacement is conserved if and only if the fitness of
the resulting list increases (lines 17 to 20). This whole process is repeated during a certain allowed
amount of time t.
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This technique can be considered as a genetic algorithm without crossover. It is thus an adaptation
of the (1+1) Evolutionary Algorithm [DJW02]. Indeed, instead of removing a random configuration,
the worst ranked configuration, in terms of fitness, is removed.

Combining constraints with SB methods forms a suitable approach for the configuration generation.
Its use differs from both SB [ABHPW10] and similarity-based techniques [HB10]. Indeed, without
constraint solving, generating valid configurations is almost impossible for large scale FMs. This
problem is shortened by combining similarity, constraint solving and SB approaches.

4.4 Configuration prioritization

In this section, the similarity distances are used for prioritizing a given configuration suites, no matter
the way they have been obtained. To this end, two algorithms named Local Maximum Distance
and Global Maximum Distance are introduced. They produce a list CS, which is the result of the
prioritization. They enable prioritizing efficiently the configurations with respect to t-wise.

4.4.1 Local Maximum Distance prioritization

Algorithm 2 formalizes this procedure. This approach iterates over the initial unordered configuration
suites S, looking for the two configurations sharing the maximum distance (line 6). These two
configurations are then added to the resulting list CS and removed from S (lines 7 to 9). This process
is repeated until all the configurations from S are added to CS.

Algorithm 1 Search-based configuration generation(m, t)
1: input: m, t . Number of configurations to generate and execution time allowed for generating them
2: output: CS . configuration suite (prioritized)
3: CS ← []
4: S ← ∅ . Set of configurations
5: for i← 1 to m do
6: Cunpredictable ← Request to the solver . Reinitialize the solver if it cannot give a new configuration
7: S ← S ∪ {Cunpredictable}
8: end for
9: s← size(CS)
10: while the elapsed time is lower than t do
11: fitness← f(CS[1), ..., CS[s])
12: CS ← Global Max. Dist. P rioritization(S)
13: Cworst ← CS[s] . Cworst verifies min

(∑s

k=1 d(Cworst, CS[k]
)

14: repeat
15: Cunpredictable ← Request to the solver . Reinitialize the solver if it cannot give a new configuration
16: until Cunpredictable 6= Cworst
17: CS.set(s, Cunpredictable) . The worst configuration is replaced
18: newF itness← f(CS[1], ..., CS[s])
19: if newF itness ≤ fitness then
20: CS.set(s, Cworst) . The worst configuration is taken back
21: end if
22: end while
23: return CS

38
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Algorithm 2 Local Maximum Distance prioritization (S)
1: input: S = {C1, ..., Cm} . Unordered configuration suites
2: output: CS . Prioritized configuration suite
3: CS ← []
4: while #S > 0 do
5: if #S > 1 then
6: Select Ci, Cj ∈ S where max (d(Ci, Cj)) . Take the first one in case of equality
7: CS.add(Ci)
8: CS.add(Cj)
9: S ← S \ {Ci, Cj}
10: else . S contains only one element
11: CS.add(Ci) where Ci ∈ S
12: S ← ∅
13: end if
14: end while
15: return CS

Algorithm 3 Global Maximum Distance prioritization (S)
1: input: S = {C1, ..., Cm} . Unordered configuration suites
2: output: CS . Prioritized configuration suite
3: CS ← []
4: Select Ci, Cj ∈ S where max (d(Ci, Cj)) . Take the first ones in case of equality
5: CS.add(Ci)
6: CS.add(Cj)
7: S ← S \ {Ci, Cj}
8: while #S > 0 do
9: s← size(CS)

10: Select Ci ∈ S where max
(∑s

j=1 d(Ci, CS[j]
)

. Take the first one in case of equality
11: CS.add(Ci)
12: S ← S \ {Ci}
13: end while
14: return CS

4.4.2 Global Maximum Distance prioritization

This approach is formally described in Algorithm 3. Informally, this approach selects at each step the
configuration which is the most distant to all the configurations already selected during the previous
steps. To this end, the two configurations belonging to S and sharing the highest distance are first
added to CS (lines 4 to 6). These two configurations are then removed from S (line 7). The next
step consists in adding to CS and removing from S the configuration sharing the maximum distance
to all the configurations already added to CS (lines 8 to 13): for each configuration of S, we sum the
individual distances with the other configurations of CS, thus giving a value for the set. Then the
maximum is obtained by comparing these set values (line 10). This process is repeated until S is
empty.

This technique allows having more diversity than the Local Maximum Distance one for k < m

configurations, but it is computationally more expensive. This is due to the need of calculating all
the distances from one configuration to the others (Alg. 3, line 10).

4.5 Empirical study

In this section, the configuration generation and prioritization approaches are assessed. In configuration
generation, we aim at selecting configurations providing the highest coverage. In configuration
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Table 4.1: The 110 moderate size feature models involved in the empirical study.
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#Features 11 24 32 41 52 60 71 88 94 172 15 50 100 200 500

#Constr. 22 35 54 201 119 82 99 151 191 310 31.65 94.7 195.6 395.7 983.2

#Config. 14 18,176 73,728 6,912 331,776 3.9E9 4.5E13 1.7E13 2.3E7 1.1E27 209.55 1.0E8 8.6E15 3.2E20 8.4E80

#2-sets 151 833 1,448 2,592 3,746 6,189 7,528 13,139 11,075 42,638 300.65 4,103 17,368 71,760 4.67E5

prioritization, the emphasis is on maximizing the overall t-wise coverage each time a configuration is
tested. The objective of this case study is to answer the four following research questions (RQs):

• [RQ1] How does our configuration generation approach compare with state of the art tools?

• [RQ2] How effective is the configuration generation approach when applied on both moderate
and large size FMs?

• [RQ3] How do our prioritization approaches compare with an interaction-based technique?

• [RQ4] How effective are the configuration prioritization approaches when applied on both moderate
and large size FMs?

Answering the first RQ amounts to evaluating how our configuration generation approach performs
compared to state of the art techniques. We expect our approach to provide a t-wise coverage close
to the one achieved by the examined tools. The second RQ aims at evaluating the configuration
generation approach on both moderate and large FMs. Unlike existing tools, we expect our approach
to scale up to t = 6 even on large FMs, by providing a partial but scalable t-wise coverage. We also
expect it to provide higher coverage than a random technique for selecting the configurations. The
third RQs amounts to evaluating how our configuration prioritization approaches perform compared
to a state of the art technique based on interaction coverage. We expect our approach to provide a
t-wise coverage close to the state of the art with a considerably lower execution time required as it
bypasses the t-wise computation. Finally, the fourth RQ aims at evaluating how our two prioritization
techniques perform on both moderate and large FMs, by comparing them with a random approach.
We expect our prioritization approaches to perform better than a random one.

Empirical results regarding the stated RQs are presented and analyzed. The conducted experimentsi
are performed on a Quad Core@2.40 GHz with 24GB of RAM. The study employs 114 FMsii divided
into two categories. The first 110 FMs are small to medium size (with a number of features lower or
equal to 1000); they are referred to as the moderate size FMs. A second subset is composed of 4 FMs
of large size; they are referred to as the large FMs.

Regarding the moderate size FMs, 10 of them are real and 100 are artificially generated. The real FMs
are taken from [SLB+11, MBC09] while the artificial ones are produced with the SPL Online Tools
(SPLOT) FM generator [MBC09]. All involved FMs are consistent (i.e., the constraints are possible
to fulfill). Details about the moderate FMs are recorded in Table 4.1. For each FM, it presents the
number of features, the number of valid configurationsiii and the number of valid 2-sets.

Regarding the large FMs, three are real, taken from [SLB+11] and one is artificially created. The
details of these FMs are recorded in Table 4.2. It presents, for each FM, the number of features and

iThe implemented approaches and the experimental data are available at http://research.henard.net/SPL/.
iiHandled via the SPLAR [MBC09] library and the Sat4j [LBP10] MBC09b.

iiiComputed via a Binary Decision Diagram.
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Table 4.2: The 4 large size feature models involved in the empirical study.
eCos 3.0 i386pc [SLB+11] FreeBSD kernel 8.0.0

[SLB+11] Generated FM
Linux kernel 2.6.28.6

[SLB+11]
#Features 1,244 1,396 5,000 6,888
#Constr. 3,146 62,183 9,419 343,944
#2-sets 2,910,229 3,765,597 49,080,075 92,540,449
#3-sets (≈) 2.25E9 3.44E9 1.61E11 4.19E11
#4-sets (≈) 1.27E12 2.34E12 3.97E14 1.50E15
#5-sets (≈) 5.79E14 1.26E15 7.70E17 3.85E18
#6-sets (≈) 2.22E17 5.76E17 1.26E21 8.71E21

the number of valid t-sets. The number of configurations cannot be computed in a reasonable amount
of time (in days) due to the high number of constraints and features of these FMs.

For the needs of the experiment, the t-sets of the FMs for t ≥ 3 are computed using the following
procedure. First, a list of all the features of the FM is recovered. Then, all the possible t-sets are
enumerated and provided to the solver to determine whether they are valid or not. For the large FMs,
computing the exact number of valid t-sets is a non-trivial and time consuming task. For instance,
it took around 3 days to a 10-threaded program running on our system to compute the 92,540,449
valid 2-sets of the Linux FM. As t increases, the number of valid t-sets explodes. As a result, we
estimate the number of t-sets. To this end, 1,000 t-wise sets are randomly sampled and checked. Since
the total number of possible t-sets of a FM is known and equal to

(2n
t

)
for n features (2n because

each feature is either selected or unselected), the valid t-sets can be directly estimated (law of large
numbers). For example, if 800 t-sets out of 1,000 sampled are valid, the number of estimated valid

t-sets is equal to
800 ∗

(2n
t

)
1, 000 .

4.5.1 Comparison with state of the art tools (research question 1)

In this section, we compare our approach with three state of the art tools: ACTS [BYL+12], CASA
[CCL03] and SPLCAT [JHF12a]. The latter is the most recent covering array tool available and
performs for t = 2 and t = 3. The two others perform for t = 2 to 6.

4.5.1.1 Experiment setup

We compare our generation approach with the three tools. We also consider CASA where the desired
number of configurations can be specified. This approach is denoted as CASA-n. We employ the 10
real FMs of moderate size. For each FM and for t = 2, ..., 6, the three approaches are executed. Then,
if the result is available, our approach and CASA-n are performed with the parameters corresponding
to the minimum number of configurations provided by the other techniques. Similarly, the running
time of our approach was set to the minimum one. CASA, CASA-n and our SB approach are
performed 10 times independently as they are heuristic techniques providing different solutions at
each execution.
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Table 4.3: Comparison of the configurations’ generation with ACTS, CASA and SPLCAT on the 10 smallest
feature models of the empirical study for t = 2, ..., 6. Our search-based approach has been performed using
the minimum number of configurations and minimum time performed by the other approaches, indicated
in bold. N/A indicates that the generation time exceeded 3 days. The t values for which there is no result
available are not represented.

ACTS (IPOG) CASA (avg 10 runs) CASA-n (avg 10 runs) SPLCAT SB (avg 10 runs)

FM t-wise Configs. Time Configs. Time Configs. Time Configs. Time Configs. Time Cov.

2 9 2.1 7 0.55 7 0.05 8 0.15 7 0.05 98.37%
3 13 4.4 14 1.14 14 0.045 13 0.24 13 0.045 98.12%

Cellphone 4 14 16 14 3.79 14 0.34 N/A N/A 14 0.34 99.98%
5 14 57 14 55.15 14 0.27 N/A N/A 14 0.27 100%
6 14 399 14 6,947 14 0.45 N/A N/A 14 0.45 100%

2 13 3.3 8.66 1,28 8 0.27 10 0.24 8 0.24 99.34%
C. Strike
Simple
FM

3 33 70 25.33 22,16 25 2.21 38 0.8 25 0.8 99.71%

4 94 3,278 72.67 790 72 24,7 N/A N/A 72 24.7 98.77%

2 11 7 9 3.67 9 0.6 10 0.3 9 0.3 99.41%
SPL
SimulES,
PnP

3 32 211 26.33 122.9 26 6.49 35 1 26 1 99.32%

4 83 53,602 72 3,026 72 282.5 N/A N/A 72 282.5 99.64%
DS Sample 2 103 506 96.33 96.16 96 3,13 97 0.9 96 0.9 98.49%

3 N/A N/A 385 12,093 385 113.2 419 4.8 385 4.8 99.51%

Electronic
Drum

2 35 38.4 23.67 4,826 23 4.04 27 0.6 23 0.6 99.46%

3 178 43,416 N/A N/A 134 91.22 134 2.9 134 2.9 99.91%

Smart
Home v2.2

2 17 15.5 15 28 15 3.1 15 0.5 15 0.5 99.44%

3 75 3,731 55.67 5,182 55 106.7 64 3.2 55 3.2 99.80%

Video
Player

2 15 26.5 9.33 56.4 9 1.5 18 0.7 9 0.7 99.75%

3 46 32,687 35.67 2,542 35 47.02 47 3.7 35 3.7 99.98%

Model
Transfor-
mation

2 35 187 26.33 3,165 26 13.6 28 0.9 26 0.9 99.45%

3 N/A N/A N/A N/A 130 482.7 130 10 130 10 99.91%

Coche
Ecologico

2 97 2,348 90 156.91 90 10.6 95 1.1 90 1.1 99.67%

3 N/A N/A N/A N/A 378 3,694 378 13 378 13 99.87%

Printers 2 186 148,446 180.8 718.82 180 71.8 182 2.8 180 2.8 99.75%
3 N/A N/A N/A N/A 560 N/A 560 139 560 139 99.81%

.

4.5.1.2 Experiment results

The results of the comparison are recorded in Table 4.3. When the time required by an approach
exceed three days (259,200 seconds), we consider its results as not available (N/A). Along the same
lines, when none of the three tools can perform for a specific t value in less than three days, the
result for this t value is not presented. Following the results of Table 4.3, it is clear that SPLCAT is
much faster than the two other tools on almost all the FMs. In some cases, it is more than 10,000
times faster. Only CASA-n can compete in terms of time on some FMs such as the Cellphone one.
As a result, our approach has been most of the time executed with the time used by SPLCAT or
CASA-n.

Regarding the size of generated configuration suites, the smaller ones are shared between CASA and
SPLCAT. Our approach and CASA-n have been performed using the smallest size. Regarding the
coverage achieved by our approach, one can see that it is close to 100% for all the subjected FMs.
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Finally, one can observe that as the complexity of the FM increases, the tools require more time to
generate the configurations and thus do not scale well to large FMs. In addition, none of the tools
were able to perform for t values above 3 on most of the employed FMs, even though the complexity
of these FMs is quite low.

4.5.1.3 Research question 1 summary

The experiments conducted for the comparison with state of the art tools bring out the following
conclusions. First, our configuration generation approach can compete with existing ones.
Indeed, our approach provides a partial t-wise coverage, with values very close to 100% for all the
FMs studied. This was achieved using the minimum amount of time required among the three
tools. Second, existing tools have difficulties to scale to t values greater than 3, even on
relatively small FMs. Indeed, our experiments performed on moderate size FMs demonstrated
that for 7 FMs out of 10, none of the three tools was able to provide results within 3 days from t = 4.
The 3 FMs on which the tools worked are the smallest one, and for two of them, results are only
available up to t = 4. Overall, the fastest tool among the three is SPLCAT.

4.5.2 Configuration generation assessment (research question 2)

Here, we assess the ability of the proposed approaches to cover t-sets. To this end, we evaluate our
approach on all the moderate size FMs for 2-wise and compare it to SPLCAT. We limit to 2-wise
since SPLCAT does not scale well to 3-wise or above (at least in a reasonable amount of time, in days)
for the subjected FMs. As far as we know, our SB approach is the only one which allows scaling to
any t value, even for large FMs. Finally, since no other technique can serve as a basis for comparison
for the large FMs, we compare the SB approach with configurations selected in an unpredictable
way from the SAT solver (Section 4.3.2.1). In the following, this approach will be referred to as the
unpredictable one and will also serve as a comparison basis.

4.5.2.1 Moderate feature models

Here, we compare the SB approach with both the unpredictable approach and SPLCAT. This study
is only based on the 2-wise coverage and considers only the moderate FMs.

Experiment setup. To enable a fair comparison, the SB and unpredictable approaches generate sets
of configurations of the same size as those provided by SPLCAT. The SB approach is allowed to run
for one minute and is performed 10 times per FM. For the 100 generated FMs, the results presented
are averaged on all the FM.

Experiment results. The results are presented in Figure 4.1. SPLCAT is not represented as it
always achieves 100% of coverage. The results for the generated FMs are depicted by Figure 4.1a
and the results for the real FMs are represented on Figure 4.1b. It appears that the proposed SB
approach, as an approximation technique, is close to SPLCAT. Indeed, in the best case, it is able
to achieve 100% of 2-wise coverage with only 1 minute of processing time allowed. In the worst
case, 95% is achieved on both the generated and real FMs. In addition, the SB approach is much
more stable than the unpredictable one, which can drop down to 69% of coverage in the worst case.
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Chapter 4. Scalable t-wise generation and prioritization of software product line configurations

Although 100% of coverage might be desirable, the focus of our approach, as explicitly stated in the
introduction section, is the partial but scalable t-wise coverage.

Besides, the performance of SPLCAT varies. For FMs up to 200 features, SPLCAT requires less than
a minute. However, it takes around 6.2 minutes for the FMs of more than 200 features, and around
159 minutes for the 1,000 features ones.

Finally, to evaluate whether the difference between the SB approach and the unpredictable one is
statistically significant, we followed the guidelines suggested by Arcuri and Briand [AB11]. To this
end, we performed a Mann-Whitney U Testiv. For each run per FM, we computed the p-value between
ivThe Mann Whitney U Test is a non-parametric statistical hypothesis test for assessing whether one of two samples of
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(c) Result of the Mann-Whitney U Test between the search-based and
the unpredictable approach (equal hypothesis)

Figure 4.1: Configuration generation on the 110 moderate feature models for t = 2 (1 minute execution for
the search-based approach, 10 runs for each approach. The execution time of the unpredictable approach is
few seconds.).
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the two approaches. It results in 10 p-values for each FM. Figure 4.1c depicts the distribution of the
p-values for the real and generated FMs. For the generated FMs, the p-values are represented all
together. Since all the p-values are below the significance level 5%, the difference between the two
approaches is considered as statistically different.

4.5.2.2 Large feature models

Scaling to large FMs is a quite difficult task, even for 2-wise. Neither SPLCAT nor the tools we
studied (see Section 4.5.1) are able to “scale well to these sizes” [JHF11]. On the contrary, the
SB approach efficiently deals with the t-wise combinations where no other approach is able to do
so, by producing a partial coverage. Here, we evaluate the t-wise coverage ability of the SB and
unpredictable approaches on the large FMs for t = 2, ..., 6.

Experiment Setup. To estimate the t-wise coverage of the configurations, we use a process similar
as the one used to calculate the t-sets of a FM and described in the beginning of Section 4.5. The
sampling process is repeated 10 times per each examined t value (t = 2 to t = 6) with samples of size
100,000. The SB and unpredictable approaches are executed on all the large FMs to produce 5 times
50 and 100 configurations, with the time restriction of 30 minutes. Another experiment involves
the generation of 1,000 configurations and the recording of the coverage over the runs of the SB
approach.

Experiment results. The results are recorded in Table 4.4. This table presents the mean coverage
achieved with respect to t-wise per FM and per approach. Additionally, it records the standard
deviation of these values. A score above 95% with respect to 2-wise is achieved by both the approaches
and for all the studied FMs when producing 50 configurations. With respect to 6-wise, scores of
35% to 50% are achieved. By producing 100 configurations, higher scores are achieved for both the
approaches. It should be mentioned, based on the standard deviation values recorded in Table 4.4,
that a small variation on the achieved coverage is observed. It is a fact indicating that the approaches
are quite stable.

Generally, the SB strategy provides a higher coverage compared to the unpredictable approach,
especially for high values of t. This is true for all the t-wise coverage measures. Allowing more time
to the SB technique should increase the gap with the unpredictable approach since the iterations
improve the configuration suites. However, the results are based on the selection of 50 and 100
configurations. Therefore, the maximum difference between the two approaches lies between the
coverage of the unpredictable selection and the maximum possible coverage achievable with 50 or
100 configurations. Achieving 100% of t-wise coverage with 50 or 100 configurations seems to be
impossible for the large FMs. It is expected that more configurations are needed to achieve 100% of
coverage.

To evaluate whether the difference between the two approaches is statistically significant, we perform
a Mann-Whitney U Test a the same lines as explained in Section 4.5.2.1. To this end, we applied the
following procedure. For each t-value, each number of configurations (50 and 100) each of the 30 runs
and each of the 10 t-sets sample, we evaluated the p-value resulting from the test between the search
based approach and the unpredictable one. It results in 5× 2× 30× 10 p-values per FM. Figure 4.2
presents the distribution of these 3000 p-values per FM. The resulting p-values are below the level of
significance of 5%, fact indicating that the two approaches are significantly different.

independent observations tends to have larger values than the other. We obtain from this test a probability called
p-value which represents the probability that the two samples are equal. It is conventional in statistics to consider
that the difference is not significant if the p-value is higher than the 5% level.
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Table 4.4: T-wise coverage (%) for the large feature models with 50 and 100 configurations. The search-based
approach was allowed to run for 30 minutes. The execution time required by the unpredictable approach is
few seconds.

SB Unpredictable SB Unpredictable

50 configurations 100 configurations

FM t-wise Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

2 99.04 0.10 98.12 0.34 99.60 0.07 99.43 0.17

3 94.38 0.26 92.28 0.52 97.55 0.14 96.89 0.36

eCos 4 83.40 0.44 80.92 0.53 91.44 0.23 90.41 0.49

5 67.26 0.49 65.59 0.50 80.02 0.29 79.29 0.51

6 49.98 0.45 49.43 0.45 64.96 0.29 64.90 0.48

2 98.89 0.11 97.95 0.27 99.31 0.10 99.17 0.16

3 95.67 0.16 92.77 0.44 97.89 0.12 96.70 0.30

FreeBSD 4 86.56 0.24 81.88 0.53 93.63 0.20 90.65 0.40

5 69.97 0.26 65.23 0.48 83.68 0.28 79.29 0.40

6 50.12 0.22 46.69 0.37 67.57 0.29 63.22 0.36

2 95.92 0.12 94.93 0.29 98.30 0.08 97.83 0.19

3 85.94 0.20 84.04 0.33 92.31 0.16 91.19 0.25

5000f. gen 4 70.50 0.21 68.24 0.30 80.86 0.25 79.22 0.25

5 52.89 0.18 50.87 0.25 65.39 0.25 63.65 0.25

6 36.63 0.18 35.18 0.23 48.92 0.25 47.44 0.23

2 97.74 0.16 97.03 0.23 98.74 0.09 98.46 0.15

3 93.03 0.21 91.86 0.28 96.03 0.13 95.47 0.21

Linux 4 82.67 0.24 81.25 0.27 90.28 0.18 89.48 0.22

5 65.77 0.23 64.50 0.25 79.33 0.20 78.40 0.21

6 46.48 0.18 45.63 0.20 63.08 0.21 62.25 0.23

Table 4.5: 6-wise coverage and fitness evolution over time for the search-based approach on the large feature
models with 1,000 configurations.

0 run (=unpred.) 5,000 runs 10,000 runs 15,000 runs
Coverage Fitness Coverage Fitness Coverage Fitness Coverage Fitness

eCos 94.191% 271,880 94.225% 286,304 94.263% 288,039 95.343% 288,818
FreeBSD 76.236% 294,184 76.395% 299,962 76.465% 300,892 76.494% 301,634

Generated FM 82.986% 258,763 84.492% 263,243 84.605% 263,974 84.778% 264,362
Linux 89.411% 296,661 90.404% 298,709 90.640% 299,114 90,671% 299,363

Table 4.5 records the coverage achieved by the SB approach each 5,000 runs repetitions for 1,000
configurations with respect to 6-wise. Here, we observe that a higher level of coverage is achieved
with more configurations. For instance, the SB approach achieves 90,671% of 6-wise coverage for the
Linux FM. It also shows, as it can be expected for a SB approach, that allowing more processing time
to the approach allows reaching a higher coverage. Indeed, at each 5,000 runs, the coverage recorded
is higher than the previous one. Here, the unpredictable approach, represented by the “0 run”, is also
the initialization stage of the SB strategy (Alg. 3, lines 5 to 10). For example, considering the eCos
FM, 94.191% of 6-wise coverage is achieved at the initialization. After 15,000 runs, it is 95.343%,
which represents ≈ 2.475744E15 additional 6-sets covered compared to the unpredictable approach.
The number of valid t-sets is extremely high (see Table 4.2) and thus, a small increase in the coverage
represents a high increase in the number of additional valid t-sets covered. Finally, the 15,000 runs
require about 10 to 20 hours of processing time per FM.
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4.5.2.3 Fitness function

So far, the presented results suggest that the SB approach is effective and able to scale to large
FMs. Scalability is reached thanks to the ability of the similarity fitness function to mimic the t-wise
coverage. To illustrate this fact, Table 4.5 records the fitness function values with respect to 6-wise
coverage for the large FMs as the SB approach evolves. It shows that the fitness increases with
the coverage over the runs of the approach. The same trend holds for all the FMs and values of t
considered in this study. Figure 4.3 illustrates the correlation between the fitness and the t-wise
coverage for the Linux FM. Therefore, the assessment of a configuration suites can be performed
without computing any t-set, thanks to the fitness function. Recall that computing the t-sets requires
vast computational resources (Section 4.3.1, Eq. 4.1).

4.5.2.4 Research question 2 summary

The configuration generation experiments emphasize the following outcomes. First, the similarity
heuristic and the fitness function driving the approach form an efficient guide toward
the configurations selection. The SB configuration generation mimics the t-wise coverage, does
not depend at all on t and thus, it avoids the combinatorial explosion due to the combinations of t
features. Second, the proposed technique is the first one, to the authors’ knowledge, which
scales well to large FMs while achieving a decent level of t-wise coverage (depending on
the number of configurations desired). Finally, in addition to be a close approximation of SPLCAT, it
is more flexible than the latter as it allows specifying the processing time and the number of desired
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Figure 4.2: Result of the Mann-Whitney U Test between the search-based and the unpredictable approach
for t = 2...6 on the four large feature models (equal hypothesis).
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configurations. These are characteristics conforming to an industrial context where the testing process
is subjected to budget constraints.

4.5.3 Configuration prioritization assessment (research questions 3 & 4)

This part evaluates the proposed prioritization approaches. To this end, we compare them with a
prioritization technique based on interaction coverage from Bryce and Memon [BM07]. This technique
is commonly used in CIT studies and it is based on t-wise interaction coverage. Since similarity forms
an alternative to the t-wise evaluation, it is natural to compare with it. In the remainder of this
chapter, we refer to this approach as Interaction-based.

The first experiment focuses on t = 2 for the moderate FMs, due to the limitations of SPLCAT (see
Section 4.5.2 and 4.5.2.1). The second experiment demonstrates the ability of the similarity-based
approaches to scale to any t value for the large FMs. This second part does not consider SPLCAT
and the Interaction-based approach [BM07] given their inability to scale, as demonstrated by our
results (see Section 4.5.3.1). Finally, to compare the prioritization approaches, the area under curve
is evaluated.

4.5.3.1 Moderate feature models

This part of the experiments compares our prioritization techniques to SPLCAT and the Interaction-
based approach for t = 2. SPLCAT does not provide an independent prioritization approach as
we do but it tries to cover the maximum of 2-sets each time a configuration is added, effectively
implementing the greedy heuristic for prioritization [YH12]. The resulting configurations can thus be
considered as ordered for covering faster the highest amount of 2-sets.

Experiment setup. For each moderate FMs, three different sets of configurations are used to apply
the prioritization techniques. The first set is the configuration suites produced by SPLCAT (Case
I). The second one is a configuration suites of m = #features

2 configurations, selected with the
unpredictable method (Case II). Finally, the last set is composed of the configurations generated by
SPLCAT plus the same amount of configurations selected by the unpredictable method (Case III).
Using these different sets allows ensuring that the prioritization approaches are relevant whatever the
nature of the configurations.

All these sets of configurations are randomized before executing the prioritization techniques. This
practice ensures that our approaches are independent of the original order. On each of the three cases
and for each FM, a random prioritization is averaged 10 times. Cases II and III are independently
repeated 10 times to avoid any bias from the initial configuration suites. For each approach and each
independent repetition, the execution time is recorded.

Experiment results. Table 4.6 presents the area under curve for each case and technique. Recall
that a higher surface value indicates a better prioritization. With respect to Table 4.6 and focusing
on Case I, we observe the following ordering: Random < Local Maximum Distance < SPLCAT <

Global Maximum Distance ≈ Interaction-based. For Case II and Case III, the order Random < Local
Maximum Distance < Global Maximum Distance < Interaction-based is observed. However, the
Global Maximum Distance approach performs almost equally as the Interaction-based one (difference
of 0.01 in the area under curve). It shows the ability of the similarity heuristic to mimic the t-wise
coverage. In addition, it also performs better than the Random and Local Maximum Distance.
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Table 4.6: Prioritization results: area under curve (scale 1:1,000).

C
as
e
I
C
as
e
II

C
as
e
II
I

C
as
e
IV

/
10
0
co
nf
s.

C
as
e
IV

/
50
0
co
nf
s.

C
as
e
V

/
10
0
co
nf
s.

C
as
e
V

/
50
0
co
nf
s.

T
ec
hn

iq
ue

\
t

2
2

2
2

3
4

5
6

2
3

4
5

6
2

3
4

5
6

2
3

4
5

6

R
an

do
m

7.
99

7.
74

8.
93

9.
23

8.
34

7.
10

5.
57

4.
05

49
.0
6
47
.6
9
45
.0
9
40
.8
8
35
.2
2
8.
65

7.
33

5.
67

4.
02

2.
67

47
.4
7
44
.7
0
40
.4
2
34
.4
0
27
.4
0

L
oc
al

M
ax

.
D
is
t.

8.
33

7.
89

9.
07

9.
28

8.
43

7.
17

5.
61

4.
07

49
.1
6
47
.7
7
45
.1
5
40
.9
7
35
.3
2
8.
89

7.
68

6.
13

4.
45

3.
03

47
.7
6
45
.2
8
41
.4
4
36
.1
4
29
.5
5

G
lo
ba

l
M
ax

.
D
is
t.

8.
43

8.
02

9.
19

9.
33

8.
48

7.
22

5.
65

4.
11

49
.2
3
47
.9
2
45
.4
6
41
.3
2
35
.6
6
9.
06

8.
00

6.
56

4.
91

3.
37

48
.1
5
46
.1
9
42
.9
5
38
.0
3
31
.7
1

In
te
ra
ct
io
n-

ba
se
d

8.
43

8.
03

9.
20

SP
L
C
A
T

8.
37

Figure 4.4 illustrates this behavior. For each case and category of FM (real and generated), the
results are averaged on all the FMs of the category by normalizing the number of configurations
selected from 0 to 100%. For instance, with respect to Case I and the generated FMs (Figure 4.4a),
the Global Maximum Distance prioritization approach enables covering more than 90% of the 2-set
with only 30% of the configurations. On the contrary, the random prioritization needs around 50% of
the configurations. For Case II and Case III, the same trends are observed. These results emphasize
that the prioritization techniques are either able to perform similarly (Local Maximum Distance) or
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Table 4.7: Prioritization results: execution time in milliseconds.
Case I Case II Case III Case IV/100 confs. Case IV/500 confs. Case V/100 confs. Case V/500 confs.

Local Max. Dist. 241.3 263.4 288.1 1,693 45,437 1,602 46,299

Global Max. Dist. 250.1 271.2 299.4 1,764 47,310 1,698 48,267

Interaction-based 45,256 61,371 111,864

better (Global Maximum Distance) as both the SPLCAT and the interaction-based approach.

Regarding the execution time, consider Figure 4.5. It shows the average execution time for the
considered prioritization approaches on the real FMs (Figure 4.5a) and on the generated FMs (Figure
4.5b). SPLCAT is not considered as it is a configuration generation approach. From these figures, it
is clear that the Interaction-based technique has difficulties to scale. This is due to the expensive
computation of the t-wise interactions (see Section 4.3.1, Equation 4.1). For instance, consider the
generated FMs (Figure 4.5a). For models of 200 features, it requires around 50,000 milliseconds. For
FMs of 500 features, the execution time increases to more than 106 milliseconds.

On the contrary, the Local and Global Maximum Distance approaches are significantly less impacted
by the complexity of the FM. Finally, Table 4.7 shows the execution time for the different cases.
Overall, the Global Maximum Distance approach provides a little overhead compare to the Local
Maximum Distance. Given the fact that the Global Maximum Distance performs similarly to the
Interaction-based technique with a considerably lower computational overhead, its use is advisable.

4.5.3.2 Large feature models

This part of the study assesses the Global Maximum and Local Maximum Distance prioritizations on
the large FMs for t = 2, ..., 6. The Interaction-based approach is not considered given its difficulty to
handle moderate size FMs, as shown in the previous section.

Experiment Setup. We generate two sets of 100 and 500 configurations containing dissimilar
configurations (Case IV) and two sets of the same sizes containing half similar and dissimilar
configurations (Case V). We choose these two kinds of sets of configurations since the prioritization
approaches are similarity-driven and can thus be influenced by the nature of the used sets. Indeed,
applying these approaches on sets containing dissimilar configurations can be less effective than
applying them on sets containing similar configurations. We randomize each configuration suites and
execute the Local Maximum Distance and Global Maximum Distance prioritizations on each of them.
We also produce 10 random orderings to compare with our approaches. This practice shows that the
prioritization techniques are not affected by random orders.

Experiment results. As for the results presented in Section 4.5.3.1, we evaluate the area under
curve. The results are recorded in Table 4.6, Cases IV and V. Random is averaged on 10 runs for
each value of t. The presented values are averaged on the 4 large FMs. We observe the following
ordering for both Case IV and Case V: Random < Local Maximum Distance < Global Maximum
Distance. Thus, the prioritizations approaches are relevant for finding the dissimilarities in the sets
containing both similar and dissimilar configurations. The Global Maximum Distance prioritization
tends to be the most relevant approach.

As expected, when configurations are already dissimilar (Case IV), the gain is lesser than when the
configuration suites is any (Case V). Additionally, Figure 4.6 presents the t-wise coverage difference
between the Global Maximum Distance prioritization and the random ordering for 500 configurations,
averaged on the 4 FMs. For Case IV (Figure 4.6a) and t = 4, 3% of difference is observed with 30
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configurations selected. For Case V (Figure 4.6b), 14% of difference is observed with 100 configurations
for t = 6.
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Figure 4.4: Prioritization on the moderate size feature models for t = 2.
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4.5.3.3 Research questions 3 & 4 summary

The experiments conducted for the prioritization bring out the following conclusions. First, the Global
Maximum Distance performs similarly to the Interaction-based approach. However, the Global
Maximum Distance approach is significantly faster and less sensitive to the complexity
of the FM than the Interaction-based one. Thus, it forms a scalable approach for prioritizing
configurations. Second, the most relevant configurations contributing to t-wise coverage
are the most dissimilar ones. This is enabled by the similarity heuristic. Finally, the proposed
prioritization approaches are able to prioritize any configuration suites, by looking for the
dissimilarities. This is performed without computing any t-sets and regardless of the value of t.

4.6 Discussion

This section first discusses the interaction fault detection ability of configuration suites. Then, it
presents practical implications and further applications of our approaches. Finally, the limitations of
our techniques and the threats to the validity of the conducted experiments are highlighted.

4.6.1 Detecting t-wise interaction faults

Failure due to interactions are difficult to detect as they occur when several features are involved
together. Generally, each feature can be tested independently, e.g., using unit testing. Highlighting t-
wise faults is more difficult. Arcuri and Briand [AB12] established the lower bound for the probability
of a random test suite to trigger at least one failure related to t-wise. However, this bound is only
valid in the context of CIT without constraints.

In our context, features are constrained and the above-mentioned results cannot be applied directly.
Providing theoretical results, such as those of Arcuri and Briand [AB12] is not possible in the presence
of constraints. This is due to the fact that constraints are specific to each FM. Therefore, in our
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Figure 4.5: Execution time for the prioritization on the moderate size feature models for t = 2. Each
approach has been performed 10 times per feature model.
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Figure 4.6: Global Maximum Distance VS Random prioritization on the four large feature models.

work, we turn to empirical analysis. In order to complete the experiments with reasonable resources,
we restrict the experiments to t-wise interaction faults for t = 2 to 6. If we consider that all the
t-wise interactions of the SPL have the same probability to trigger a fault and that concrete test cases
derived from a selected configuration expose all the feature interaction faults that are present in this
configuration, then the probability that a fault is found by a configuration suite can be represented
by the t-wise coverage [AB12]. This probability is calculated by summing the t-wise coverage for all
the examined t values (t = 2, ..., 6).

Figure 4.7 depicts the probability of finding faults for the large FMs for all the t-values in the context
of prioritization. This probability is obtained by summing the probabilities for all the FMs. Compared
to a random ordering, a difference of about 15% in the probability to find a fault can be observed
with around 100 configurations. It means that with the first 100 configurations proposed by our
approach, we reach a probability of finding a fault equal to 57% whereas a random ordering would
need more than 200 configurations to reach the same probability.
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Figure 4.7: Estimation of the interaction fault detection rate of the Global Maximum Distance and Random
prioritizations for all the t-values. It uses the configurations resulting from the prioritization experiment on
the four large feature models (Case V).

Regarding the configuration generation, Table 4.8 presents the estimation of the fault detection rate
achieved by the SB and the unpredictable approaches on the 4 large FMs, for t = 2, ..., 6. For 50
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Table 4.8: Estimation of the interaction fault detection rate on the 4 large feature models for t = 2, ..., 6 for
the search-based and unpredictable approaches.

50 confs. 100 confs.
SB Unpredictable SB Unpredictable

eCos 78.81% 77.28% 86.70% 86.19%
FreeBSD 80.24% 76.90% 88.41% 85.80%
5000f. gen. 71.26% 68.31% 71.75% 71.26%

Linux 77.14% 76.05% 85.49% 84.81%
avg 76.8625% 74.635% 83.0875% 82.015%

configurations, the SB approach yields an estimated interaction fault detection rate of 76.86% and
the unpredictable one a rate of 74.63%. Thus, an average difference of more than 2% is observed
between the two techniques with only 50 configurations.

4.6.2 Practical implications

While using existing tools such as SPLCAT, we realized that existing approaches which implement a
covering array technique already perform a prioritization with respect to t-wise interactions. This is
due to the construction of these techniques which try to cover the maximum amount of t-sets with
each new configuration. As a result, the outcome of our prioritization techniques on small or moderate
size FMs is limited, as existing approaches already perform a prioritization. However, even in this
case, our techniques perform better than the existing ones. The benefit of our techniques is more
evident in the context of large SPLs, where other tools cannot work. In addition, our prioritization
methods can operate on any configuration suites. They can therefore be used in combination with
existing approaches and tools.

Our generation approach requires a FM. It can work on any FM, regardless of its complexity. As a
result, the system abstracted by the FM has no impact on our approach. When the available model
is not a FM, and if the model can be translated to a Boolean one, then our approach can also be
applied. Indeed, it is still possible in that case to employ transformation rules, such as [FPDN05] in
order to transform the model to a Boolean one. If such a transformation is not possible, our technique
can be combined with a SMT solver to handle non-Boolean models. Finally, our technique does not
rely on code or existing test cases. Such artifacts may not be available at an early stage of the system
development or hard to analyze directly due to their size and complexity. As a result, such cases are
well suited for applying our approach.

The number of configurations to generate and the amount of time allowed to generate them are
parameters of our SB approach. These parameters aims at making the testing process more flexible.
Indeed, existing approaches [JHF11] generate all the configurations necessary to cover all the t-sets.
The problem is that they may take a large amount of time to perform this full coverage and they may
generate too many configurations. To the authors’ knowledge, our approach bestows a unique feature
which aims at maximizing the t-wise coverage for the specified amount of configurations, given the
specified amount of time. As a result, it gives a partial coverage but also makes the testing process
more practical for large SPLs. In any cases, for large FMs, it is not possible to evaluate all the t-wise
interactions.

Besides, our approach scales to large FMs. While using constraint solvers, we observed that solving
constraints is a time consuming task and thus an obstacle to scalability. In addition, calculating
the t-wise coverage is difficult for large FMs since all the t-sets of the configurations have to be
considered. Our generation approach uses a SAT solver only for generating configurations satisfying
the constraints of the FM. The prioritization and generation techniques are driven by a similarity
heuristic which mimics t-wise coverage and does not require to compute any combination of feature.
As a consequence, one strength of the proposed approach is that it maximizes the coverage for any t
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value. On the contrary, existing approaches focus only on a given t-value. This results in maximizing
the fault detection up to t while leaving aside the higher strengths of t [AB12]. Thus, our approach
has a clear advantage over existing ones.

4.6.3 Further applications

The propositions made in this chapter have potential application to other possible issues related to
CIT or SPL testing. For example, considering the evolution of a SPL over time [RE12], our approach
can also be relevant. In that context, different versions of the FM exist (the original and the evolved
FMs). Each version represent a model of the SPL. Therefore, taking into account the evolution over
time implies modifying the way the distances are computed. The aim is to focus on the features
that have changed or that have been added to the evolved version of the SPL. Thus, by defining a
distance measure which ignores the unchanged features from the calculation, the proposed approach
is generate and prioritize configurations over the interactions of the modified or new features.

Along the same lines, other approaches [SPF12, KBK11, JHF+12b] attribute different importance to
t-wise combinations. This practice can reduce the complexity of the problem since only the most
important combinations are considered. However, our approach also targets on early development
stage where no code or system is available. Furthermore, even in the case where the system code
is available, these approaches face the usual pitfalls of dynamic analysis. Thus, scalability issues,
problems of handling system calls or memory constructs restrict the application of such approaches
on large scale systems. In addition, our approach is somehow orthogonal to these techniques due to
the generation and prioritization. In order to take into account the relative importance of feature
combinations, there is a need to assign weights representing the importance of the interactions. These
weights can be assigned based on the use of dynamic approaches. Our approach can handle weight
by defining an appropriate distance measure. In this work, we consider all the features and features
combination as equal. The importance of features or combination of features is a worth studying
problem which has been left open for further research, adding one objective to be considered by the
prioritization algorithm [HPP+13c].

4.6.4 Limitations

The first limitation of our configuration generation approach is that it does not provide a full coverage.
Indeed, we perform a partial but scalable t-wise coverage. In other words, we try to maximize the
t-wise coverage achieved for a given number of configurations, within the specified amount of time
provided. This is not a problem as evaluating all the t-wise interaction is difficult for very large
SPLs. In addition, in an industrial context, the testing budget is typically limited, preventing all the
SPs of the SPL from being tested. Thus, a smaller to 100% coverage is going to be achieved. The
second limitation is that our approach works only with FMs. It may also work with other models that
can be translated to Boolean ones. Alternatively, a SMT solver can be used to satisfy non-Boolean
constraints. Finally, we depend on the scalability of constraint solvers and the overhead they induce.
We believe that this is not important as we did not find any concrete FM raising such an issue. We
acknowledge this as a potential limitation for the cases of FMs significantly larger than the studied
ones.
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4.6.5 Threats to validity

Although we used various FMs, there is an external validity threat. Indeed, we cannot ensure
that the proposed strategies will provide similar results on different sets of FMs (larger or more
constrained). To reduce this threat, we used a relatively large set of 114 FMs of different sizes,
combined real and generated FMs to cope with a variety of situations. Additionally, potential errors
in our implementation could affect the presented results and lead to internal validity threats. To
diminish these threats, we divided the implementation into sub stages to have a better control on
each of the steps composing the proposed approaches. The comparison with existing tools also gave
us confidence in our implementation. In addition, in order to enable reproducibility and to reduce the
above-mentioned threats, we made our implementation and the experiment data publicly available.
Besides that, to prevent as possible a construct validity threat, we sampled each technique on 10
runs.

Another threat concerns the identification of faulty interactions by the actual testing of a concrete SP.
It is assumed that testing a SP ensures revealing the interaction faults that it contains. While this
holds, it is a common assumption made by all the CIT approaches. CIT techniques require to cover
at least once each t-wise interaction, supposing that executing the configuration suite will effectively
reveal the faulty interactions. Additionally, this assumption is in line with the structural testing (code
coverage) approaches. Branch coverage forms a testing requirement in many software standards, e.g.,
[oST]. However, covering branches or statements assumes that executing parts of the code will trigger
the faults that they contain [FHLS98]. Besides, it should be clear that to reveal a faulty interaction,
a test should exercise this interaction. Suppose that a configuration suite covers x% more t-wise
interactions than another one. Then, it is guaranteed that the other configuration suite will miss all
the faults contained in these x interactions. Finally, recent studies [KWG04, PYCH13] demonstrate
the correlation between t-wise and fault detection.

4.7 Conclusions

T-wise testing aims at finding faulty feature interactions. However, full t-wise testing is hard and
scalability is an issue: no approach is able to deal with high values of t (≥ 3) for large SPL FMs
in a reasonable amount of time (in days). Moreover, there is no suitable technique supporting the
generation of a fixed number of configurations, according to a limited budget. This chapter tackled
these problems by proposing (a) approaches to prioritize configurations while maximizing the t-wise
coverage and (b) a scalable and flexible SB technique to generate configurations under budget and
time constraints for large FMs.

Our experiments, performed on 100 artificially generated and 14 real FMs from t = 2 to t = 6 show
the feasibility and the scalability of our solutions. We managed to deal with the largest FMs available,
such as the Linux kernel (≈ 7,000 features, ≈ 200,000 constraints and ≈ 8.71E21 valid 6-sets) with
up to 90.671% of 6-wise coverage achieved with 1,000 configurations. Thus, by enabling a partial but
scalable t-wise coverage and by introducing flexibility in the testing process, our approaches pave the
way to a potentially t-unrestricted CIT. Finally, our implementations and the experimental data are
publicly available at http://research.henard.net/SPL/.
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5
A mutation-based approach for

generating software product
line configurations

In the previous chapter, we presented a scalable technique for generating software product line config-
urations for combinatorial testing. This chapter introduces a mutation-based approach for generating
software product line configurations, which forms an alternative to the traditional combinatorial
interaction testing criterion.

This chapter is based on the work that has been published in the following paper:

• Christopher Henard, Mike Papadakis, and Yves Le Traon. Mutation-based generation of
software product line test configurations. In Claire Le Goues and Shin Yoo, editors, Search-
Based Software Engineering, volume 8636 of Lecture Notes in Computer Science, pages 92–106.
Springer International Publishing, 2014

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 The mutation-based configuration generation approach . . . . . . . . . . . 58

5.2.1 Creation of mutants of the feature model . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 The search-based process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Approach assessment (research question 1) . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Comparison with random (research question 2) . . . . . . . . . . . . . . . . . . 64

5.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



Chapter 5. A mutation-based approach for generating software product line configurations

5.1 Introduction

CIT is widely used to reduce the difficulty of testing SPLs. While this criterion is effective for
disclosing bugs [KWG04, PYCH13], recent work has shown mutation as a promising alternative to
the CIT criterion, also correlating with fault detection [PHT14] for existing test suites.

The use of mutation. In this chapter, mutation is used to produce defective versions of the FM.
As introduced in Chapter 2, a mutant is an altered version of the rules defining the legal feature
associations. Such mutants are useful as they represent faulty implementations of the FMs that
should be tested. Thus, while CIT measures the number of feature interactions of the FM exercised
by the test suite, mutation measures the number of mutants detected by the test suite. However,
and despite the potential benefit of mutation, there is no approach with the purpose of generating
configurations for SPL with respect to the mutation criterion.

Contributions of this chapter. This chapter devises the first approach which generates SPL con-
figurations using mutation of the FM. Since the SPL configuration space is too large to be exhaus-
tively explored, we introduce a SB technique based on the (1+1) Evolutionary Algorithm (EA)
[DJW02, LY14] in conjunction with a constraint solver in order to only deal with valid configurations.
In order to guide the search towards the detection of mutants, four search operators are proposed to
both add and remove configurations from the test suite. The proposed approach solves the challenge
of generating a test suite with respect to the mutation criterion. Experiments on 10 FMs show the
ability of the proposed approach to generate test suites while with the purpose of mutation.

In brief, the present chapter provides the following insights:

• We propose the first mutation-based approach for selecting configurations for SPLs. It is based
on four search operators.

• We conduct an experiment on 10 FMs.

The remainder of this chapter is organized as follows. Section 5.2 describes the approach itself.
Section 5.3 presents the conducted experiments and Section 5.4 discusses threats to their validity.
Finally, Section 5.5 concludes the chapter.

5.2 The mutation-based configuration generation approach

The approach for generating configurations starts by creating mutants of the SPL FM. Then, a SB
process based on the (1+1) Evolutionary Algorithm (EA) [DJW02, LY14] makes use of both the FM
and the mutants to produce a set of configurations. The (1+1) EA is a hill climbing approach which
has been proven to be effective in several studies [HPP+14, HM10] and been used in the previous
chapter. The overview of the approach is depicted in Figure 5.1. The following sections describe the
different steps of the approach.
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5.2.1 Creation of mutants of the feature model

The first step of the approach creates altered versions of the FM. Each altered version is called a
mutant and contains a defect within the boolean formula of the FM. For instance, the two following
mutants are produced from the FM example of Figure 2.1:

M1 =
H

f1 ∧ (f2 ∨ f1)∧ (f1 ∨ f2)∧ (f3 ∨ f1)∧ (f1 ∨ f3)∧ (f4 ∨ f1)∧ (f5 ∨ f1)∧ (f1 ∨ f5)∧ (f6 ∨ f3)∧ (f7 ∨ f3)∧
(f3 ∨ f6 ∨ f7) ∧ (f8 ∨ f5) ∧ (f9 ∨ f5) ∧ (f5 ∨ f8 ∨ f9) ∧ (f8 ∨ f9) ∧ (f7 ∨ f4) ∧ (f4 ∨ f8) ∧ (f9 ∨ f4).

M2 = f1 ∧ (f2
H
∧ f1)∧ (f1 ∨ f2)∧ (f3 ∨ f1)∧ (f1 ∨ f3)∧ (f4 ∨ f1)∧ (f5 ∨ f1)∧ (f1 ∨ f5)∧ (f6 ∨ f3)∧ (f7 ∨ f3)∧

(f3 ∨ f6 ∨ f7) ∧ (f8 ∨ f5) ∧ (f9 ∨ f5) ∧ (f5 ∨ f8 ∨ f9) ∧ (f8 ∨ f9) ∧ (f7 ∨ f4) ∧ (f4 ∨ f8) ∧ (f9 ∨ f4).

In M1, a literal has been negated whereas in M2, an operator OR has been replaced by an AND one.
It should be noted that the proposed approach is independent from the way the mutants have been
created and from the changes they operate compared to the original FM.

5.2.2 The search-based process

Once the mutants are created, the SB process starts to generate a set of configurations. The different
steps of the approach are described in Algorithm 4 and detailed in the following. First, an initial
population is created and its fitness is evaluated (line 1 and 2). Then, the population is evolved (line
3 to 10): search-operators try to improve the population by adding or removing configurations.

5.2.2.1 Individual

An individual I or potential solution to the problem is a configuration suite of k connfigurations that
are satisfying the FM constraints: I = {C1, ..., Ck}.

5.2.2.2 Population

The population P is composed of only one individual: P = {I}.

Search-based 
processMutants

Feature
Model Time/generations

Configuration
suite

Figure 5.1: Overview of the mutation-based approach for generating configurations.
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5.2.2.3 Initial population

The individual of the initial population is initialized by generating randomly a valid configuration by
using a SAT solver.

5.2.2.4 Fitness evaluation

The fitness f of an individual I is calculated by evaluating how many mutants are not satisfied by at
least one of the configurations of I, i.e., the MS. More formally, if we denote as M = {M1, ...,Mm}
the m mutants of the FM, the fitness f of an individual I is evaluated as follows:

F (I) = |{Mi ∈M | ∃Cj ∈ I |Cj does not satisfy Mi}|
m

= MS,

where |A| denotes the cardinality of the set A. It should be noted that all the configurations considered
are satisfying the FM constraints since they belong to I.

5.2.2.5 Search operators

The approach makes use of four search operators that operate on an individual I. The operators are
divided into two categories: operators that add a new configuration and operators that remove a
configuration. The operators are depicted in Figure 5.2.

• Add a random configuration. This operator is presented in Figure 5.2a. It adds to the
considered individual a configuration randomly chosen from the space of all the configurations
of the FM .

• Remove a random configuration. This operator is depicted in Figure 5.2b. It randomly
removes a configuration from the individual.

• Smart add of a configuration. This operator is presented in Figure 5.2c. First, the altered
constraints of the mutants are collected. Then, for each constraint, the number of configurations
from I that do not satisfy it is evaluated. This can be view as a mutant constraint score. Then,
using this score, a proportionate selection is performed in order to choose one of these constraints.
The idea is to promote the constraint that is the less not satisfied by the configurations of I.
Then, the operators tries to select a configuration which is at the same time satisfying the FM

Algorithm 4 Mutation-based generation of configurations
1: Create an initial population P with one individual I : P = {I} containing one configuration
2: Evaluate the fitness f of I : f = F (I)
3: while budget (time, number of generations) do
4: Select a search operator with a probability p
5: Generate a new individual I ′ using the selected search operator
6: Evaluate the fitness f ′ = F (I ′)
7: if f ′ ≥ f then
8: I = I ′

9: end if
10: end while
11: return I
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and the negation of the selected constraint. Doing so will result in a configuration that is able
to violate a clause of the mutant and thus do not satisfy it.

• Smart remove of a configuration. This operator is illustrated in Figure 5.2d. For each
configuration of I, it is evaluated the number of mutants that are not satisfied. This can be
view as a configuration score. Then, using this score, a proportionate selection is performed in
order to choose which configuration to remove from I. The idea is to promote the removal of
configurations that are not satisfying the less amount of mutants.

5.3 Experiments

In this section, the proposed SB approach, that we will denote as SB is evaluated on a set of FMs.
The objective of these experiments is to answer the two following RQs:

• [RQ1] Is the proposed approach capable of generating configurations leading to an improved MS?

• [RQ2] How does the proposed approach compare with a random one in terms of MS and number
of configurations generated?

The first RQ aims at evaluating whether the MS is increasing over the generations of SB and if at a
point it is able to converge. We expect to see the MS increasing over the generations and stabilize at

Feature
Model

Individual

SAT
Solver

Random  
configuration 
added

(a) Add a random configuration

Individual Configuration removed

(b) Remove a random configuration

Mutants Feature
Model

Individual

SAT
Solver

4. Configuration added 
1. Evaluation

2. Score-based selection 

3. Assume
altered 
constraint 
negation

(c) Smart add of a configuration

Mutants

Individual

 3. Configuration
removed

1. Evaluation

2. Score-based selection

(d) Smart remove of a configuration

Figure 5.2: The search operators used by the generation approach.
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Table 5.1: The feature models used for the experiments.
FM Features Constraints Possible configurations Mutants
Cellphone 11 22 14 119
Counter Strike 24 35 18,176 208
SPL SimulES, PnP 32 54 73,728 291
DS Sample 41 201 6,912 1,086
Electronic Drum 52 119 331,776 664
Smart Home v2.2 30 82 3.87×109 434
Video Player 71 99 4.5×1013 582
Model Transformation 88 151 1.65×1013 851
Coche Ecologico 94 191 2.32×107 1,030
Printers 172 310 1.14×1027 1,829

Table 5.2: Mutation operators used to alter feature models.
Mutation Operator Action
Literal Omission (LO) A literal is removed
Literal Negation (LN) A literal is negated
OR Reference (OR) An OR operator is replaced by AND

a time. In practice, it means that the approach is capable of improving the solution and reach a good
enough MS.

The second question amounts to evaluate how SB compares with a naive approach. Since no other
technique exists to perform a mutation-based generation of configurations for SPLs, we compare it to
a random one. To this end, two bases of comparison are used. The first one is the evaluation of the
MS when generating the same number of configurations with both approaches. The second baseline
evaluates the number of configurations required by the random approach to achieve the same level
of MS as SB. It is expected that a higher MS than random for the same number of configurations
will be observed and we expect a random generation to necessitate more configurations than SB to
achieve a given MS.

5.3.1 Approach assessment (research question 1)

5.3.1.1 Setup

SB has been performed 30 times independently per FM with 1,000 generation with an equal probability
p = 0.25 to apply one of the four operators.

5.3.1.2 Results

The results are recorded in Figure 5.3 and Table 5.3. The figure presents the evolution of the MS
averaged on all the FM and all the 30 runs while the table presents detailed results per FM. With
respect to Figure 5.3, one can see the ability of the approach to improve the MS over the generations
and stabilize around 0.8. With respect to Table 5.3, one may observe that the approach is able
to improve the MS for each of the considered FM, with improvements of 68% in average for the
DS Sample FM. Besides, there are very small (0.03) or non-existent variations among the different
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Table 5.3: Comparison between the initial and final mutation score on the 30 runs for 1,000 generations.

Generation 1 Generation 1,000
FM \ MS min max avg min max avg
Cellphone 0.39 0.66 0.5 0.79 0.79 0.79
Counter Strike 0.37 0.56 0.45 0.79 0.79 0.79
SPL SimuleES, PnP 0.42 0.62 0.49 0.7 0.7 0.7
DS Sample 0.17 0.27 0.22 0.9 0.9 0.9
Electronic Drum 0.38 0.56 0.44 0.78 0.78 0.78
Smart Home v2.2 0.45 0.66 0.54 0.89 0.89 0.89
Video Player 0.36 0.55 0.45 0.69 0.72 0.71
Model Transformation 0.41 0.61 0.5 0.86 0.86 0.86
Coche Ecologico 0.44 0.57 0.49 0.8 0.8 0.8
Printers 0.35 0.45 0.41 0.74 0.75 0.75

final MS achieved over the 30 runs, fact demonstrating the ability of SB to reach a good solution at
each execution of the approach. Finally, it should be noticed that SB achieves the above-mentioned
results using only a small number of generations (1,000 generations). This is an achievement since
SB techniques usually require thousands of executions in order to be effective [HM10].

5.3.1.3 Answering research question 1

The results presented in the previous section demonstrate the ability of SB to both improve the MS
over the generations and converge towards an acceptable MS. Indeed, some mutants may not be
detectable if they are either leading to an invalid formula or an equivalent to the original FM formula
(i.e., there is no configuration that cannot satisfy it), thus limiting the maximum score achievable by
the approach. In this work, we only focus on the process of generating a configuration suite which
maximize the MS. Finally, we observe improvements in the MS of over 60% and a quick convergence,
with very small variations between each of the 30 runs, thus giving confidence in the validity of the
search approach.
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Figure 5.3: Evolution of the mutation score over the 1,000 generations averaged on all the feature models
for the 30 runs.
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Table 5.4: Comparison between the search-based approach and a random one on the following basis: (a)
same number of configurations and (b) same mutation score (MS). Each approach has been performed 30
times independently. #Conf denotes the number of configurations. The execution time is in seconds.

SB approach Rand. same #Conf Rand. same MS
FM 30 runs #Conf MS Time (s) MS Time (s) #Conf Time (s)

min 3 0.79 2 0.48 0 4 0
Cellphone max 4 0.79 3 0.79 0 42 0

avg 3.46 0.79 2.66 0.67 0 12.4 0
min 7 0.8 9 0.68 0 22 0

Counter Strike max 11 0.8 11 0.75 1 109 2
avg 9.53 0.8 10.6 0.72 0.16 43.73 0.56
min 3 0.7 11 0.61 0 4 0

SPL SimulES, PnP max 5 0.7 13 0.7 1 30 1
avg 4.36 0.7 11.9 0.66 0.1 9.66 0.16
min 16 0.9 46 0.56 0 32 1

DS Sample max 17 0.9 49 0.77 1 114 8
avg 16.03 0.9 46.8 0.70 0.2 60.26 2.9
min 5 0.78 22 0.66 0 9 0

Electronic Drum max 8 0.78 27 0.77 1 29 1
avg 6.83 0.78 24.8 0.72 0 15.46 0.3
min 7 0.88 26 0.79 0 13 0

Smart Home v2.2 max 11 0.88 30 0.88 1 43 2
avg 8.36 0.88 28 0.84 0.1 22.7 0.66
min 14 0.69 53 0.62 0 161 19

Video Player max 22 0.72 65 0.65 1 1,000* 532
avg 18.86 0.71 59 0.64 0.5 518 183
min 8 0.86 54 0.77 0 15 0

Model Transfo. max 12 0.86 67 0.85 1 56 4
avg 9.36 0.86 59.2 0.82 0.2 31.13 1.86
min 11 0.8 75 0.71 0 17 1

Coche Ecologico max 14 0.8 89 0.77 1 57 7
avg 11.76 0.8 80 0.74 0. 31.36 2.9
min 25 0.74 443 0.67 2 149 110

Printers max 35 0.75 567 0.72 3 1,000* 4,928
avg 30 0.75 513 0.70 2.4 481 1,264

*The number of configurations required by random to achieve the same MS as SB has been limited to
1,000.

5.3.2 Comparison with random (research question 2)

5.3.2.1 Setup

SB has been performed 30 times independently per FM with 1,000 generation allowed. An equal
probability p = 0.25 to apply one of the four operators has been set. For each run of SB, a random
one has been conducted in order to (a) evaluate the MS achieved when randomly generating the same
number of configurations as the number proposed by SB, and (b) evaluate the amount of generated
configurations required by the random approach in order to achieved the same MS. In the latter case,
a limit of 1,000 configurations has been set.
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5.3.2.2 Results

The results are recorded in Table 5.4. It presents the minimum, maximum and average number of
configurations, MS (MS) achieved and execution time in seconds for the following approaches: SB,
random based on the same number of configurations as SB and random based on the same MS as SB.
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Figure 5.4: Search-based approach VS Random: distribution of the mutation score and number of configu-
rations on the 30 runs.
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Figure 5.5: Search-based approach VS Random: average values of the mutation score and number of
configurations on the 30 runs.
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Chapter 5. A mutation-based approach for generating software product line configurations

Besides, Figure 5.4 depicts the distribution of the values over the 30 runs and Figure 5.5 presents the
average values.

From these results, one can see that SB is quite stable, with small variations in both the MS and
number of configurations achieved (5.4b and 5.4a). Compared to random based on the same number of
configurations, SB always performs better in terms of MS. For instance, for the DS Sample FM, there
is a difference of 0.34 on minimum MS achieved and 0.2 on the average one (Table 5.4). Regarding
the comparison based on the MS, the random approach requires much more configurations to achieve
the same MS. For instance, with respect to the Video Player FM, the random approach requires in
average more than 500 configurations to reach a MS of 0.71 while SB only needs less than 20 (Figure
5.5a). In addition, there were some cases, e.g., the Printers FM where the random approach was not
able to achieved the same MS as the one reached by SB, requiring more than 1,000 configurations
and more execution time than SB.

5.3.2.3 Answering research question 2

Our results show that SB outperforms the random approach. We observed a difference between
random and SB of up to 34 % in favor of SB. Additionally, the random technique requires much more
configurations to achieve a given MS. In some cases, it is not even able to terminate, requiring more
than 20 times more configurations. This shows the ability of SB to generate configurations while at
the same time maximizing the MS that can be achieved.

5.4 Threats to validity

The experiments performed in this chapter are subject to potential threats towards their validity.
First, the FMs employed are only a sample and thus the generalization of theses results to all possible
FMs is not certain. In particular, using different models might lead to different results. In order
to reduce this threat, we selected 10 FMs of different size and complexity. Thus, we tried to use a
diversify and representative set of subjects. A second potential threat can be due to the experiments
themselves. First, there is a risk that the observed results happened by chance. To reduce this threat,
we have repeated the execution of both the proposed approach and the random one 30 times per
FM. Doing so allows reducing risks due to random effects. Another threat can be due to the SAT
solver used. Indeed, there is a risk that another solver will lead to different results. We choose the
PicoSAT solver as it was easy to modify it to produce random solutions. The same threat holds for
the mutation operator used. We tried to employ various mutation operators that are relevant for
FM formulas. This chapter aims at generating configurations with the aim of detecting mutants.
The ability of finding faults is not evaluated. Regarding the MS achieved, it is expected that giving
more time to the SB approach will provide better results. Even if small differences are observed in
the MS compared to the random approach, this can be in practice leading to finding more faults
[PHT14, HPP+14]. Finally, the presented results could be erroneous due to potential bugs within the
implementation of the described techniques. To minimize such threats, we divided our implementation
into separated modules. We also make publicly available the source code and the data used for the
experiments.
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5.5 Conclusions

This chapter devised an approach for generating configurations for SPLs based on mutation. The
novelty of the proposed technique is the use of mutation of the FM to guide the search, thus focusing
on possible faulty implementation of the FM that should be tested. To the authors knowledge, it is
the first approach that is performing so. The conducted experiments show the benefit of the approach
compared to a random one as it is able to both reduce the configuration suite size while significantly
increasing the MS. To enable the reproducibility of our results, our implementation and the FMs
used are publicly available at http://research.henard.net/SPL/SSBSE_2014/.
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Part III
Multi-objective

configuration generation





6
A constraint-aware search

approach for configuring large
software product lines

In the previous part, configuration generation approaches were presented. However, they were aiming
at satisfying only one testing objective, combinatorial testing and mutation. This chapter presents a
multi-objective configuration generation approach handling multiple testing objectives that target a
single configuration.

This chapter is based on the work published in the following paper:

• Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. Combining multi-
objective search and constraint solving for configuring large software product lines. In Proceedings
of the 37th IEEE/ACM International Conference on Software Engineering (ICSE 2015), 2015
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Chapter 6. A constraint-aware search approach for configuring large software product lines

6.1 Introduction

The problem of feature selection was first addressed in 2008 by White et al. [WDS08] who introduced
an approach called Filtered Cartesian Flattening to select features from a FM, but this was only
able to cater for single optimization objectives. In 2011 Guo et al. [LLWG12, GWW+11] introduced
a genetic algorithm for the same problem, demonstrating that it outperformed Filtered Cartesian
Flattening on synthetically generated SPLs, but did not present results for any real-world SPLs.

These previous approaches were all single objective approaches. Therefore they could not construct
software products from SPLs for which multiple (perhaps conflicting and competing) objectives needed
to be optimized. Sadly, such single objective solutions are unsuited to most real-world SPL feature
selection problems (which are multi-objective). However, in 2011, Wu et al. [WTKC11] introduced a
multi-objective optimization formulation that was evaluated on a Mail Server System case study.

In 2013 Sayyad et al. provided a detailed investigation of the multi-objective SPL feature selection
problem in four related papers [SGPMA13, SIMA13a, SMA13, SIMA13b] that collectively established
the current state-of-the-art. Their first paper [SMA13] demonstrated that search-based optimization
can be used to find products that optimize multiple objectives. They evaluated on real-world SPLs,
replicating their results [SGPMA13], and reporting on parameter tuning effects [SIMA13a]. Finally,
Sayyad et al. introduced additional heuristics to improve the scalability of their approach [SIMA13b],
which is an important consideration for SPL optimization, since SPLs can be very large.

None of these previous approaches to SPL feature selection have included any explicit technique to
handle constraints, leaving open the question of how best to optimize SPL feature selection in the
presence of constraints. This is an important open question because most real-world SPLs are highly
constrained [LP07], and solutions that fail to respect such constraints are likely to be rejected by
both developers and their users.

Indeed, many constraint-violating solutions will prove to be simply unbuildable; constraints often
determine whether or not a product can be feasibly constructed. Furthermore, this chapter shows
that concentrating on constraint-respecting solutions also allows the search to find software products
that significantly outperform the state-of-the-art.

Contributions of this chapter. We introduce SATIBEA, a search-based SPL configuration generation
algorithm, augmented by constraint solving and two smart search operators. SATIBEA guides the
automated search to constraint-respecting solutions that maximise multiple objectives in reasonable
time. Our empirical study, which include the largest yet reported SPL, demonstrates that SATIBEA
is a scalable and significant improvement over the current state-of-the-art.

The primary contributions of the chapter can be summarised as follows:

1. We introduce SATIBEA, a new algorithm for SPL selection and evaluate it on 5 real-world
SPLs, ranging from 1,244 to 6,888 features with respect to 3 quality indicators and two diversity
measures. We perform 30 independent executions to support inferential statistical testing for
significance and assessment of effect size.

2. We show that SATIBEA significantly outperforms the current state-of-the-art (with maximal
effect size) according to all 3 solution quality indicators and for all 5 SPLs.

3. We demonstrate the importance of augmenting search with constraint solving in such constrained
spaces as SPLs: We present results that show that our simple constraint solving approach alone
can also significantly outperform the state-of-the-art with maximal effect size with respect to
all 3 solution quality indicators in 3 SPLs including the largest one, Linux.
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6.2. The existing approaches

4. We demonstrate the added value of our combined approach with smart operators over constraint
solving alone. Over the 15 comparisons (5 SPLs, each with 3 quality indicators) we find that
SATIBEA significantly outperforms constraint solving alone in 13, and with maximal effect size
in 11.

5. We demonstrate SATIBEA’s scalability. Scalability is a known and important issue for both
SPLs [SIMA13b, LP07, HPP+14] and search-based software engineering [HMZ12].

The remainder of the chapter is organized as follows: Sections 6.2 present the existing work and
Section 6.3 details the proposed approaches. The studied RQs and the experimental setup are detailed
in Sections 6.4 and 6.5. Experimental results are presented and discussed in Sections 6.6 and 6.7.
Finally, Section 6.8 concludes the chapter.

6.2 The existing approaches

The IBEA [ZK04] is an evolutionary MOO technique using quality indicators to guide the search
towards the optimal solutions. IBEA has the ability to exploit user preferences. The advantages of
this algorithm over other search techniques for the SPL configuration problem have been shown in
[SMA13, SIMA13b].

Sayyad et al. [SMA13] proposed setting the number of constraints that are violated as a minimization
objective within the search process in order to deal with the SPL constraints. The user preferences
are also modeled as additional optimization objectives. The approach applies the standard mutation,
i.e., flipping bits of the offspring with a specific probability, and crossover operators. Their results
provide evidence that this practice can lead to invalid and marginally invalid configurations. They
also suggest that IBEA is capable of providing a wide range of valid configurations that exploit and
optimize user preferences.

The results of Sayyad et al. were reinforced by the study of Olaechea et al. [ORGC14, Ola13] who
demonstrated, on small models, that IBEA is capable of finding the optimal solutions. Olaechea et al.
also showed that is feasible to compute exact solutions when considering models with fewer than 45
features. This bound indicates the need for approximation algorithms, such as IBEA, for the cases of
larger models.

Empirical evidence has been provided to show that by enhancing the initial population of the
algorithm with one valid configuration, called seed, IBEA is capable of scaling on very large FMs
has also been provided [SIMA13b]. According to the studies of Sayyad et al., one seed that is rich,
i.e., one configuration with many features selected, is adequate for improving the search process and
more effective than using many seeds. We only consider large SPLs and thus, we compare with this
approach which forms the current state-of-the-art. In the rest of the chapter we refer to it as the
state-of-the-art or as the IBEA approach.

6.3 The proposed approaches

One of the most challenging SPL optimization tasks is the automatic generation of valid configurations.
The current state-of-the-art uses IBEA to search and find valid solutions. An alternative to search
would involve the use of a SAT solver [HPP+14]. In this case, a valid configuration is a satisfiable
“model” found by the solver. To this end, one might attempt to enumerate all the valid solutions of
a model and select those that are optimal with respect to the other objectives. However, the large
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number of valid configurations makes this simplistic approach infeasible [Ola13]. As a result, some
form of search-based technique is needed.

To effectively perform search, we seek to combine the benefits of both constraint solving and searching
in a complementary way. The question this raises is how best to perform such a combination. To
achieve this, two key aspects are considered: diversity promotion and search using smart operators.
These aspects are taken into account in our approach called SATIBEA. We also define a “filtered”
technique which only bestows the diversity promotion. Doing so allows to empirically assess its
contribution to SATIBEA success in isolation.

6.3.1 Diversity promotion

We wish to promote maximal diversity of SAT solutions in a cheap way. We do this by randomly
permuting the parameters that control the search for constraint-satisfying solutions processed by the
SAT solver. More specifically, there are three different SAT parameters that we permute:

1. Constraint order. This is the order in which the constraints are considered.

2. Literal order. This is the order in which the literals of each constraint are ordered.

3. Phase selection. This is the order {true, false} in which assignments to variables are
instantiated.

By randomly permuting these three parameters at each iteration of the SAT execution, we increase the
diversity of solutions found. To empirically assess the degree of Diversity Promotion (DP) this creates,
we use a dissimilarity metric, as it is defined in [HPP+14]. Based on the Jaccard distance, this metric
captures degrees of difference between the selected and unselected features of two configurations.
The metric takes values between 0 and 1. A value of 1 signifies that the two configurations differ
completely, while, 0 signifies that the two considered configuration are the same.

Table 6.1 records the results of the above-mentioned dissimilarity metric for solutions produced, on a set
of subject models, with and without DP. These subjects are introduced in Section 6.5.1. Specifically,
Table 6.1 records a) the average dissimilarity between two configurations that are consecutively
generated by calling the solver 1,000 times, b) the set dissimilarity, i.e., the dissimilarity between any
two configurations from a set of 1,000 configurations produced by the solver and c) the percentage
increase in the diversity of the configurations as measured by the a) and b) cases. The dissimilarity
between two consecutive configurations Ci, Cj is measured by d(Ci, Cj) = |Ci∪Cj |−|Ci∩Cj |

|Ci∪Cj | . The
dissimilarity of a set of n configurations is measured by D(C1, ..., Cn) = 1

(n
2)
∑n

j>i d(Ci, Cj). Finally,

the increase in the diversity is calculated as follows: increase = (with DP−without DP)
without DP × 100. As it can

be seen in Table 6.1, the permutation of the SAT parameters allows the diversity of the solutions to
increase by 2,768% in the worst case for the consecutive calls to the solver. For the set of configurations,
the diversity increase was 161% in the worst case and more than 39,000% in the best case.

6.3.2 “Smart" operators

We introduce two operators that are “smart” in the sense that they are constraint-aware and using
diversity promotion.
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6.3.2.1 Smart mutation

This mutation operates by finding the features that are not involved in the violations of constraints. It
keeps their values and asks the solver to find a solution for the rest by assuming the values of the rest of
the features. Consider an FM with 5 features and 3 constraints: FM = (f1∨f5)∧ (f2∨f3)∧ (f2∨f5).
The configuration C = {f1, f2, f3, f4, f5} is invalid because the two constraints (f1 ∨ f5) and (f2 ∨ f5),
which involve the features f1, f2 and f5, are violated. We remove the assignment of these features
and make C partially valid, i.e., C : Cpartial = {_,_, f3, f4,_}. This partial configuration is given to
the SAT solver, which will complete it, to return a valid configuration. For instance, it can return the
following configuration C ′ = {f1, f2, f3, f4, f5}. As a result, C has been mutated into C ′.

6.3.2.2 Smart replacement

This operator randomly picks a configuration from the solutions and replaces it with a new valid one,
improving the quality and diversity of the solutions.

6.3.3 The SATIBEA approach

SATIBEA augments IBEA [ZK04] with the smart operators. Diversity promotion is used in the
optimization process through these two operators. SATIBEA also employs a form of memory by
keeping track of all the valid configurations produced by the algorithm. Based on these solutions, we
compute the Pareto front. Thus, the population is evolved via the four following operators:

1. Mutation. This is the standard bit-flip operator of IBEA. It iterates over the bits, i.e., the
feature options, of the offspring, i.e., the configuration, and flips them with a specific probability.

2. Crossover. This is the “standard” single-point crossover operator of IBEA. It combines two
solutions, i.e., configurations, by replacing the bits of the first one, from the beginning of the
offspring up to the crossover point, with those of the second one.

3. Smart Mutation, as described in Section 6.3.2.1.

4. Smart Replacement, as introduced in Section 6.3.2.2.

6.3.4 The Filtered approach

To investigate the contribution of the diversity promotion to SATIBEA’s performance, we also define
a simple algorithm that simply randomly samples over diversity promoted SAT solutions. We refer to
this approach as the Filtered one.

75



Chapter 6. A constraint-aware search approach for configuring large software product lines

Table 6.1: Dissimilarity with and without Diversity Promotion (DP) on 1,000 configurations per feature
model.

Consecutive configurations Set of configurations

without DP with DP increase without DP with DP increase

Linux 0.0004 0.5934 148,250% 0.0015 0.5937 39,487%

uClinux 0.0036 0.2807 7,697% 0.1080 0.2814 161%

Fiasco 0.0066 0.1892 2,768% 0.0436 0.1869 329%

FreeBSD 0.0022 0.5891 26,677% 0.0074 0.5897 7,991%

eCos 0.0046 0.5429 11,702% 0.0304 0.5426 1,685%

6.4 Research questions

We first empirically evaluate SATIBEA against the current state-of-the-art [SMA13, SIMA13b]. This
is a natural first RQ, since there is no point in evaluating further if our new algorithm cannot
convincingly outperform the state-of-the-art.

• [RQ1] How does the SATIBEA compare with the current state-of-the-art?

Since the results of RQ1 indicate that SATIBEA does, indeed, convincingly outperform the state-
of-the-art, we turn to the question of examining why. Naturally, since one of our primary novelties
lies in the incorporation of SAT solving into the search for constraint-respecting solutions, we next
investigate and report on the effectiveness of SAT solving alone. How well would SAT solving perform
against the current state-of-the-art on its own? This motivates RQ2:

• [RQ2] How well does the state-of-the-art perform against constraint solving alone (randomly
selected solutions filtered by SAT, i.e., the Filtered approach)?

Perhaps surprisingly, we found that the Filtered approach outperforms the state-of-the-art. This
provides compelling evidence that constraint solving does have an important role to play in the
search for optimized products, automatically configured from SPLs. However, it also raises a further
question: does SATIBEA significantly outperform constraint solving alone? If the answer is ‘no’, then
all the value in our new SATIBEA approach derives from our incorporation of constraint solving,
with search-based optimization and our smart mutation operators offering little added value. In order
to check that this is not the case, we investigate RQ3 below:

• [RQ3] How well does SATIBEA perform against constraint solving alone (randomly selected
solutions filtered by SAT, i.e., the Filtered approach)?

At this point in our study we will have considered whether our new algorithm SATIBEA outperforms
the state-of-the-art (RQ1), whether constraint solving plays an important role in its performance
(RQ2) and whether SATIBEA adds value to the search for constraint-respecting optimized software
products over-and-above pure constraint solving alone (RQ3). Our final question concerns the
execution time required to achieve these results. Even if SATIBEA convincingly outperforms all
alternatives, this will be of little consequence if it does not scale well to the challenges of very large
SPLs involving billions of possible configurations over thousands of features. We therefore conclude
our study by reporting on the time taken to complete the execution of SATIBEA on the largest SPL
for which results have been reported in the literature to date.

• [RQ4] What is the execution time required to find constraint-respecting optimized software
products from the largest SPL hitherto considered in the literature?
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Table 6.2: Feature models used in the empirical study.
Feature model Version Features (mandatory) Constraints

Linux [SLB+11] 2.6.28.6 6,888 (58) 343,944

uClinux [BSL+12] 20100825 1,850 (7) 2,468

Fiasco [BSL+12] 2011081207 1,638 (49) 5,228

FreeBSD [SLB+11] 8.0.0 1,396 (3) 62,183

eCos [SLB+11, BSL+10] 3.0 1,244 (0) 3,146

6.5 Experimental setup

This section presents the settings of the conducted experiments. Specifically, it describes the subjects,
the optimization objectives and the employed metrics.

6.5.1 Subjects

The study uses 5 FMs taken from the Linux Variability Analysis Tools (LVAT) repositoryi. The
characteristics of the FMs are described in Table 6.2. For each of them, it presents the version used,
and the number of features and constraints it contains. Following the evaluation approach used by
Sayyad et al. [SMA13, SIMA13b], each feature of each FM has been augmented with 3 attributes:
cost, used before and defects. The values for these attributes have been set arbitrarily with a uniform
distribution: cost takes real values between 5.0 and 15.0, used before takes Boolean values and defects
takes integer values between 0 and 10. The following dependency among these attributes is used: if
(not used before) then defects = 0.

6.5.2 Optimization objectives

In this study, we are measuring the following 5 objectives:

1. Correctness. We seek to minimize the constraints of the FM that are violated by a configuration.

2. Richness of features. We seek to minimize the number of deselected features in a configuration.

3. Features that were used before. We seek to minimize the features that were not used before, i.e.,
minimize the number of “false” for this attribute.

4. Known defects. We seek to minimize the number of known defects in a configuration.

5. Cost. We seek to minimize the cost of a configuration.

In practice, based on the needs and the historical data of engineers, other objectives can be also used.
We selected these five objectives to ensure identical settings as those reported for the state-of-the-art
[SIMA13b].

ihttp://code.google.com/p/linux-variability-analysis-tools
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Table 6.3: Selected features in the seeds used by IBEA.
Feature Model Selected features Selected features in [SIMA13b]

Linux 6,265 5,704

uClinux 613 455

Fiasco 338 575

FreeBSD 1,088 946

eCos 1,148 967

6.5.3 Settings

All the experiments were performed on a Quad Core@2.40 GHz with 24GB of RAM. To enable a fair
comparison with the state-of-the-art, we used exactly the same settings as the ones of Sayyad et al.
[SIMA13b]. These settings are: population size 300, archive size 300, crossover rate 0.05 and 0.001
mutation probability. The mutation probability refers to the probability that an optional feature of
the model will be flipped. Regarding the configurations, we systematically set mandatory features
(features that have to be present in any configuration) as selected and dead ones (features that cannot
be part of any configuration) as unselected in the initial population of IBEA. We also prevented
IBEA from flipping these features during the mutation process. Flipping these features always leads
to invalid configurations. Thus, this practice helps IBEA to find valid configurations. The same
evaluations settings were undertaken in the study of Sayyad et al. [SIMA13b].

We carefully followed all the recommendations of Sayyad et al. in our experiments. Unfortunately, it
is impossible to produce the same seeds. Since the work of Sayyad et al. [SIMA13b] is not currently
accompanied by any data or implementation, we simply followed the guidelines they give in their
paper. Therefore, we have produced seeds using the solver by maximizing the number of selected
features. This is done by setting the SAT parameter “phase selection" to assign true to the variables.
Note that this parameter was also used for diversity promotion (see Section 6.3.1). We thus produce
one “rich" seed per model, as suggested by Sayyad et al. [SIMA13b]. Table 6.3 describes the number
of features selected in each seed.

Similarly, the settings for SATIBEA are the same as for IBEA, i.e., population size 300, archive
size 300, crossover rate 0.05. The probability to use the standard mutation of IBEA (bitflip),
which mutates a chromosome is set to 0.98. The probability to flip a feature is set to 0.001 per
feature. The probabilities of mutating using the smart mutation and the smart replacement is 0.01
for both cases. We employed the Sat4j SAT solver [BP10] and used the jMetal framework [DN11]
for the implementation of IBEA and for the quality and diversity metrics (see Section 6.5.4). We
independently applied each approach 30 times per FM with 30 minutes of execution time for each
algorithm. Invalid configurations were discarded for all the studied techniques. Recall that invalid
configurations are useless in practice.

6.5.4 Metrics

To evaluate the studied approaches, we follow two directions: 1) we measure the proximity of the
solutions found from the optimal ones, i.e., their quality, and 2) we evaluate the diversity of the
solutions. Note that diversity is only useful when there is quality: a single diamond is preferable to
an arbitrary number of diverse glass fragments. In other words, it is useless to have diverse solutions
that are all dominated by a single one. Therefore, the diversity metrics should be considered only
when comparing solutions of similar quality.
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Since the global optimum cannot be known in all cases (as with all NP-hard problems), a reference
front is used in evaluation. It consists of the best solutions found by all the studied approaches and
it is defined as follows: Given n Pareto fronts A1, ..., An, and if 1 ≤ j ≤ m ≤ n, the reference front
Aref is defined as: Aref = {x1, ..., xm | (∀xj ∈ Aref)( 6 ∃x′ ∈

⋃n
i=1 Ai)(x′ � xj)}. It should be noted that

Aref ⊆ Ai ∪ ... ∪An.

6.5.4.1 Quality metrics

These metrics ensure that we find high quality solutions. Following the evaluation approach suggested
by Knowles et al. [KTZ06], we use three metrics to evaluate the quality of the configurations of the
Pareto front: Hypervolume, Epsilon and Inverted Generational Distance.

Hypervolume (HV) This metric represents the volume of the objective space that is dominated
by the Pareto front A. It evaluates how well a Pareto front fulfills the optimization objectives. It
is written HV and defined in [BFN08] as follows: HV(A) = λ

(⋃
x∈A[F1(x), r1]× · · · × [Fk(x), rk]

)
,

where λ(S) is the Lebesgue measure [Haw01] of a set S, k is the number of objectives, r = [r1, ..., rk]
is the reference point and [F1(x), r1]× · · · × [Fk(x), rk] is the k-dimensional hypercuboid consisting
of all the points dominated by the point x. The reference point is the maximum value that belongs
to the reference front. A higher HV denotes a better Pareto front.

Epsilon (ε) This metric measures the shortest distance that is required to transform every solution
in a Pareto front A to dominate the reference front [KTZ06]. If x = [x1, ..., xk]T ∈ R+

k is a solution,
it is defined as [ZTL+03]: ε(A,Aref) = inf

x∈R
{∀x′ ∈ Aref ∃x ∈ A |x �ε x

′}, where x �ε x
′ if and only if

∀1 ≤ i ≤ k : xi ≤ ε ·x′i. This indicator denotes how close A is to the reference front and thus, lower
values are preferable.

Inverted generational distance (IGD) This metric is the average distance from the solutions
belonging to the reference front to the closest solution in a Pareto front A [DAVV98]. IGD is

defined as follows: IGD(A,Aref) =
∑

x′∈Aref
d(x′,A)

PFS(Aref) , where d(x′, A) is the minimum Euclidean distance
between x′ and the other points in A and PFS is the Pareto Front Size (see Section 6.5.4.2). For ε,
the lower the value of IGD, the closer A is to the reference Pareto front.

6.5.4.2 Diversity metrics

These metrics ensure that the decision maker has a variety of solutions to choose. We use two diversity
metrics: the Pareto front size and the Spread of the solutions in the explored space.

Pareto front size (PFS) This metric is the number of solutions in a Pareto front A. It is calculated
as the cardinality of the Pareto front set, i.e., PFS(A) = |A|. A higher Pareto front size is preferred
since more options are given to the user. However, this is only important when high quality is
preserved.
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Table 6.4: State-of-the-art VS the proposed approaches: comparison in terms of quality metrics, i.e.,
hypervolume (HV), epsilon (ε) and inverted generational distance (IGD), and diversity metrics, i.e., Pareto
front size (PFS), spread (S) on 30 independent runs per approach. Higher values are preferred for HV, PFS
and S. Lower values are preferred for ε and IGD.

IBEA (I) Filtered (F) SATIBEA (SI) SI VS I F VS I SI VS F

median avg median avg median avg p-value Â12 p-value Â12 p-value Â12

L
in
ux

Q
u

a
li

ty

HV 7.75E-7 1.00E-6 0.1133 0.119 0.1624 0.1627 3.02E-11 1 3.02E-11 1 4.62E-10 0.97

ε 0.9084 0.9082 0.1623 0.1616 0.0733 0.0721 2.96E-11 1 2.97E-11 1 3.02E-11 1

IGD 0.0177 0.0177 0.0014 0.0014 0.0003 0.0003 3.02E-11 1 3.02E-11 1 3.02E-11 1

D
iv

e
rs

it
y

PFS 7 7.433 117 116.7 111.5 110.8 2.54E-11 1 2.56E-11 1 4.43E-07 0.11

S 0.9988 0.9988 0.8679 0.8844 0.9004 0.8997 1.11E-06 0.14 6.77E-11 0.21 0.40 0.56

uC
lin

ux Q
u

a
li

ty

HV 0.1956 0.1959 0.1300 0.1297 0.3030 0.3032 3.02E-11 1 3.02E-11 0 3.02E-11 1

ε 0.1029 0.1018 0.0783 0.0783 0.0107 0.0101 2.87E-11 1 2.38E-11 1 2.30E-11 1

IGD 0.0013 0.0013 0.0016 0.0016 0.0001 0.0001 2.97E-11 1 2.60E-10 1 2.97E-13 1

D
iv

e
rs

it
y

PFS 106 106.9 982.5 981.9 2,934 2,941 2.95E-11 1 2.95E-11 1 3.02E-11 1

S 0.5809 0.5804 0.5125 0.5138 0.3610 0.3574 3.02E-11 0 1.20E-08 0.07 3.02E-11 0

F
ia
sc
o Q

u
a

li
ty

HV 0.0238 0.0226 0.2879 0.2877 0.2894 0.2897 3.02E-11 1 3.02E-11 1 2.92E-09 0.95

ε 0.0833 0.0842 0.0036 0.0036 0.0036 0.0035 1.01E-11 1 1.10E-11 1 0.67 0.45

IGD 0.0064 0.0065 0.0002 0.0002 0.0002 0.0002 3.02E-11 1 3.02E-11 1 0.49 0.56

D
iv

e
rs

it
y

PFS 10 9.933 2,232 2,231 1,928 1,920 2.74E-11 1 2.74E-11 1 3.01E-11 0

S 0.9721 0.9282 0.3039 0.3037 0.2959 0.2953 3.02E-11 0 3.02E-11 0 4.08E-05 0.20

Fr
ee
B
SD Q

u
a

li
ty

HV 0 0.0257 0.1323 0.1328 0.2485 0.2488 8.38E-10 1 8.39E-10 0.95 3.02E-11 1

ε 1 0.7926 0.1861 0.1860 0.0953 0.0953 1.61E-11 1 1.61E-11 1 2.98E-11 1

IGD 1 0.6022 0.0013 0.0013 0.0002 0.0002 1.61E-11 1 1.60E-11 1 3.02E-11 1

D
iv

e
rs

it
y

PFS 0 5.333 476.5 475.7 1,386 1,383 1.62E-11 1 1.60E-11 1 3.00E-11 1

S 0 0.3990 0.5959 0.5949 0.7197 0.7185 3.02E-11 0.62 1.60E-11 0.62 3.02E-11 1

eC
os

Q
u

a
li

ty

HV 0.0399 0.0462 0.2591 0.2591 0.2876 0.2876 3.02E-11 1 3.02E-11 1 3.02E-11 1

ε 0.5974 0.5906 0.0975 0.0975 0.0382 0.0386 3.02E-11 1 2.53E-11 1 2.53E-11 1

IGD 0.0013 0.0013 0.0002 0.0002 5.80E-05 5.77E-05 3.02E-11 1 3.02E-11 1 3.02E-11 1

D
iv

e
rs

it
y

PFS 50 55.17 2,886 2,881 14,421 14,064 3.00E-11 1 2.99E-11 1 3.02E-11 1

S 0.9386 0.9414 0.4551 0.4548 0.5368 0.5364 3.02E-11 0 3.02E-11 0 3.02E-11 1

Spread (S) The spread measure defines the extent of spread in the solutions of the Pareto front A. It

is defined in [DPAM02] as follows: S(A) = df +dl+
∑PFS(A)−1

i=1
|di−d|

df +dl+(PFS(A)−1)d
, where di is the Euclidean distance

between consecutive solutions of A, d is the average of the di’s and df and dl are the Euclidean
distance between the extreme solutions and the boundary solutions of A. A higher spread denotes a
better Pareto front since it reflects more diverse solutions, i.e., distributed among all the optimization
objectives.
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6.5.5 Statistical analysis and tests

To check the statistical significance of the differences between the algorithms, we performed a statistical
test using the Mann–Whitney U test (two-tailed) at a 5% significance level. Furthermore, to reduce
the threats of having type I errors in the cases of multiple comparisons, i.e., incorrect rejection
of a true null hypothesis, we also consider the standard Bonferroni adjustment [AB11]. This is a
conservative but safe adjustment because it reduces the chances of type I errors. Following the advice
of Arcuri and Briand and Wohlin et al. [AB11, WRH+00], we also report the non-parametric effect
size measure, Â12, introduced by Vargha and Delaney [VD00]. It measures the extent to which the
first algorithm outperforms the second one. According to Vargha and Delaney [VD00], the differences
between populations are considered as small, medium and large when Â12 is over 0.56, 0.64, and 0.71,
respectively.

6.6 Experimental results

The results for each approach are analyzed in Section 6.6.1. Sections 6.6.2 and 6.6.3 discuss the
RQ1-RQ3. Finally, Section 6.6.4 presents results regarding the execution time of SATIBEA on the
largest SPL of the literature.

6.6.1 Results

This section presents the result of the approaches when applied to the five models. These results are
recorded in Table 6.4. This table is composed of two parts. The columns IBEA (I), Filtered (F) and
SATIBEA (SI), records the measured details about each approach. In particular, it records, for 30
executions the median and average (column avg) values of the measured metrics. The second part,
i.e., columns SI VS I, F VS I, and SI VS F, records the results of the statistical analysis results,
i.e., the p-values and the effect sizes Â12. The rows of the table record the results per examined
model, hypervolume measure (rows HV), Epsilon (rows ε), Inverted Generational Distance (rows
IGD), Pareto front size (rows PFS) and spread metric (rows S) for the the 30 runs per approach. In
addition, Figure 6.1a shows the distribution of the HVs on the 30 runs for all the models and the
evolution of the HV over time for Linux is depicted in Figure 6.1b.
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Figure 6.1: Distribution and evolution of the hypervolumes.
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6.6.2 Answering research questions 1 & 2

Our results indicate that SATIBEA outperforms the current state-of-the-art (IBEA). The statistical
analysis results, with respect to the quality metrics, column SI VS I, suggest that all the differences
are significant with maximal effect size (Â12 = 1.0). The resulting p-value are so small that nothing
changes when applying the Bonferroni correction. Regarding the diversity metrics, SATIBEA provides
better results with respect to PFS but worse with respect to S. However, S is a diversity metric which
is only important when there is quality in the solutions found, e.g., HV.

Additionally, these results reveal that SATIBEA is much better when it is applied on the two most
heavily constrained models, i.e., Linux and FreeBSD. In the median case of Linux (Figure 6.1),
SATIBEA produces configurations that cover approximately 209,548 times more wider space, i.e.,
hypervolume, than IBEA. In the median case of FreeBSD, IBEA failed to find even one solution that
is valid. Furthermore, the solutions found by SATIBEA do not only provide more options, as shown
by the PFS values, than the state-of-the-art but they are also more stable, as shown in Figure 6.1a.
All these results indicate the superiority of our method.

Our results also indicate that the Filtered approach is better than the state-of-the-art. The statistical
analysis results, with respect to the quality metrics and column F VS I, suggest that in all but the
uClinux model, the differences are significant. The differences have high effect size (Â12 ≥ 0.95) on
all the four models it wins. Also, the statistical results do not change by applying the Bonferroni
correction. Similarly to SATIBEA, in the cases of diversity, the Filtered provides better results with
respect to PFS, but worse with respect to S. However, as already mentioned, this does not indicate
that IBEA is better.

Conclusively, both proposed approaches are better than the current state-of-the-art. Noticeable is
the fact that SATIBEA wins the current state-of-the-art in all the employed quality metrics with
maximal effect size (Â12 = 1.0). In addition, when a more heavily constrained is considered, SATIBEA
performs much better than the state-of-the-art.

6.6.3 Answerwing research question 3

Our results indicate that SATIBEA wins the Filtered method in all the models according to the HV
metric. For instance, for FreeBSD, the median HV achieved by SATIBEA is almost twice the one of
Filtered, i.e., ≈0.25 VS ≈0.13. These results are also statistically significant, both with and without
Bonferroni correction, with a relatively high effect size (above Â12 = 0.95) on all the case. According
to the Epsilon and IGD metrics SATIBEA wins in all the models, with statistical significance, except
from the Fiasco where they are approximately equal. Regarding the effect sizes of the diversity
measures, the two approaches are comparable with SATIBEA having a slight advantage. With respect
to S, SATIBEA has a big difference in two cases, a medium difference in one and it looses or it is
equal in two cases. With respect to PFS, it wins in three cases and looses in two. Therefore, since
diversity is not so important if we do not have quality, overall, our results demonstrate that SATIBEA
is the clear winner. It provides the best results, statistically significant, and can handle effectively
heavily constrained FMs.

Conclusively, answering RQ3, our results suggest that SATIBEA is able to outperform the Filtered
approach, with HV values ranging from 0.16 to 0.30.
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6.6.4 Answering research question 4

Our results indicate that the HV of the solutions achieved by SATIBEA converges markedly the first
15 minutes (Figure 6.1b). After this point, the HV increases very slowly, suggesting that SATIBEA
stabilised on its ultimate solution in 15 minutes. This is an important finding since Linux is the
largest available SPL hitherto reported upon in the literature. Both the smart replacement and the
smart mutation operators which use the solver take less than six seconds. Thus, they help the fast
convergence of the search process.

6.7 Discussion

This section discusses practical implications and threats to the validity of the findings reported in the
present work.

6.7.1 Practical implications

In the SPL context, the major challenge is the production of valid configurations. It is clear that
until all constraints are satisfied, the configuration is invalid. In other words, an invalid product
configuration is totally useless from practical perspective. Therefore, the effort put by the search
approach in optimizing the other objectives is wasted when the resulting configuration is invalid.
To investigate this, we analyze the results of the Linux FM. Specifically, we group the Pareto front
solutions of IBEA according to the number of violated constraints. We visualize this situation by
computing the hypervolume values when the algorithm minimizes the violated constraints. Figure
6.2 depicts the hypervolume achieved by the Pareto front solutions according to each number of
violated constraints. We can observe that as the number of violated constraints decreases, the
hypervolume also decreases. These results show that the constraints hamper the search process.
Indeed, the graph clearly suggests a decreasing trend. This is formally confirmed by a linear regression
which bestows a relationship of the form f(x) = (5.67× 10−5)x− 0.003. This fit is good given its
coefficient of determination R2 of 0.95. In other words, our linear f explains 95% of the recorded
values. Finally, it is clear that when no constraint is violated, the hypervolume is almost 0. Since the
hypervolume represents how well the objectives are optimized, it shows that IBEA fails to fulfill the 4
other objectives when dealing with valid configurations. As a result, the optimization of the other
objectives is limited by the minimization of the violated constraints. This explains why IBEA performs
poorly compared to the Filtered approach. These results introduce the need for handling constraints
independently of the search. Thus, hybrid methods like SATIBEA are the key to success.

Our evaluation focuses on large SPLs because they are typically used in industry [SIMA13b, LP07,
WDS09] and they motivate the need for automation. Generally, our results show that when the number
of constraints increases, the difficulty faced by the search approaches also increases. Fortunately,
our results reveal that a higher number of constraints implies a higher gap between the effectiveness
of the proposed and the current state-of-the-art approaches. Additionally, it should be noted that
SATIBEA has an additional benefit over the state-of-the-art: it does not require any seeds. Thus, it
avoids the necessary off-line computation of the seeds, which according to Sayyad et al. [SMA13]
consumed approximately 3 hours.
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Apart from optimizing the objectives, the proposed approach can have additional applications. An
interesting one is to help engineers into correct and maintain FMs. To achieve this, engineers can
select multiple FM variants that represent the potential problems or changes in the original FM.
Then, valid configurations (with respect to the FM variants) can be selected and evaluated towards
the original FM. Such an approach can be automated as proposed by Henard et al. [HPP+13a]. The
important step here is the selection of valid configurations from the erroneous FM variants that will
reflect both the potential problems and the targeted changes of the original FM. One could argue
that this can be achieved with invalid configurations of the original FM. However, it is unclear how
to produce invalid configurations that are both relevant and helpful in correcting the model.

Finally, we note the importance of the various quality metrics. The hypervolume metric represents the
extent in the optimization of user objectives. Any improvements of this metric yields a strictly better
quality value [ZBT07]. In other words, a very small change in the hypervolume implies a relatively big
impact in practice. Regarding the spread diversity measure, spread configurations represents solutions
that are diverse in the space of the objectives, i.e., which achieve different trade-offs. Concretely,
the spread configurations suggest that there are configurations in favor of each considered objective.
Solutions with low spread fail to propose multiple alternative trade-offs. However, as already stated
in Section 6.5.4 diverse solutions with low quality are not meaningful in practice.

6.7.2 Threats to validity

Several threats to the validity of the present study are identified. Our results are based on five SPLs.
Hence, it is possible that our conclusions do not generalize to other cases. To reduce this threat, we
took four different and large FMs with different number of features and constraints. In particular,
the FMs we chose have a varied density of constraints, i.e., the number of constraints per feature vary.
We used both slightly and heavily constrained models such as Linux and uClinux with an average of
respectively 50 and 1.3 constraints per feature. Another threat is due to the randomness involved
in the approaches studied. Indeed, there is a chance that the observed results happened by chance.
To reduce this threat, we performed each approach 30 times independently, thereby reducing the
influence of random effects. Another threat is identified due to potential errors, unknown parameters
or differences in the implementation. In addition, the machines used may influence the results. To
reduce this threat, we performed a careful verification of our results and several manual tests at all
stages of our implementation. Additionally, we make publicly available both our implementation
and our data. Finally, a threat is due to the artificial way the values of the attributes were assigned,
i.e., the actual usage scenario, and to the replication of the state-of-the-art. Unfortunately, there is
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Figure 6.2: Impact of the violated constraints on the hypervolume for Linux. As solutions tend to conform
to the constraints of the model, the optimization of the other objectives degrades.
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6.8. Conclusions

no available implementation of the previous work [SIMA13b]. To overcome this issue, we carefully
replicated and verified, multiple times, all parameters and the technical details of the experiments as
described in [SIMA13b]. Additionally, we used the same framework, algorithms and settings as the
previous work.

6.8 Conclusions

In this chapter, we presented a multi-objective configuration approach handling testing objectives
targeting a single configuration. We have demonstrated that our SPL optimization approach,
SATIBEA, significantly outperforms the current state-of-the-art with maximal effect size. We also
provide results that show that it is important to include constraint solving techniques in SPL
optimization approaches and that our technique scales to the largest SPLs hitherto considered in
the literature. Since reproducibility has been identified as a central tenet of the research in software
engineering [WRH+00], we make the source code of our implementation and our experimental data
publicly available at http://research.henard.net/SPL/ICSE_2015/.
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7
Handling multiple testing

objectives targeting a whole
configuration suite

In the previous chapter, we presented an approach for generating configurations according to multiple
testing objectives. However, these objectives were targeting a single configuration, .e.g., maximizing
the number of optionnal features of a configuration. In this chapter, we propose a generalized approach
for generating a configuration suite according to objectives related to multiple configurations, such as
the cost or the number of these configurations.

This chapter is based on the work that has been published in the following paper:

• Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le Traon. Multi-
objective test generation for software product lines. In Proceedings of the 17th International
Software Product Line Conference, pages 62–71. ACM, 2013
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Chapter 7. Handling multiple testing objectives targeting a whole configuration suite

7.1 Introduction

As we have seen in the previous chapter, finding a SPL configuration satisfying multiple and potentially
conflicting objectives is a difficult problem. The problem is even more difficult if we aim at generating
a configuration suite fulfilling testing objectives which cover a set of configurations, which is the
problem that we aim at tackling.

Contributions of this chapter. In this chapter, we introduce a multi-objective genetic algorithm
specially adapted for SPLs. Our approach combines genetic algorithms and constraint solving
techniques in a complementary way to generate configuration suites to test that simultaneously fulfill
three testing objectives : 2-wise coverage, testing costs and number of configurations. In brief, this
chapter brings the following outcomes:

• We model the configuration generation problem for SPLs as a search problem. The proposed
approach models configurations as genes and sets of configuration as individuals. It also suggests
some possible operations on the individuals and an objective function. Therefore, it enables
search-based approaches to solve the configuration generation problem.

• We use constraint solving technique to prune the invalid configurations from the search space.
This is a crucial step towards enabling an efficient search process.

• We propose a genetic algorithm to solve the multi-objective optimization problem. The
conducted study show that the approach is practically effective and feasible.

The remainder of this chapter is organized as follows. Section 7.2 details the introduced algorithm
to solve multi-objective configuration generation for SPLs. Section 7.3 reports on experiments and
Section 7.4 discusses the threats to validity. Finally, Section 7.5 concludes the chapter.

7.2 The multi-objective configuration generation approach

The proposed approach is a multi-objective genetic algorithm. Like any genetic algorithm, it requires
the definition of its ingredients (genes, individuals and population), its operations (selection, crossover
and mutation) and the objective function that evaluates how each individual fits to the problem.

7.2.1 Modeling individuals and population

A solution to our problem is a configuration suite that gives the maximum 2-wise coverage with
the minimum cost and number of configurations. To fit the problem with the genetic algorithm, it
is needed to model the population, the individuals and the genes in terms of the actual problem.
Therefore, since an individual I represents a possible solution to the problem, it can be modeled as a
configuration suite I = {C1, ..., Cm}. Thus, each valid configuration represents a gene and the set of
individuals handled by the genetic algorithm represents the population. This allows forming as a
search space all the possible sets of valid configurations. This represents a huge space due to the
intractable number of the possible configurations contained in a SPL.

However, enabling a search approach over this space cannot be performed directly. Recall that not
all the configurations of a SPL form valid ones. Therefore, there is a need to efficiently deal with the

88



7.2. The multi-objective configuration generation approach

invalid configurations. This is not an easy task due to the large number of invalid configurations,
especially for large SPLs [POS+12]. To overcome this difficulty, a SAT solver is used to provide
random valid configurations. This is achieved by randomizing the solutions’ enumeration order of the
FM’s formula [LBP10]. To this end, random configurations, sets of random configurations and the
initial population can be produced efficiently [HPP+12]. Thus, the search space is reduced to only
include valid configurations. The importance of this step is that it prunes the invalid configurations
from the search space.

7.2.2 Modeling the genetic algorithm operations

Crossover is an operation defined between two selected individuals, called the parents and it is
performed as depicted by Figure 7.1. This operation is performed by selecting l configurations from
the smallest in size parent and swapping them with randomly selected ones from the other (bigger
in size) parent. Our individuals form sets of configurations and thus the order of the genes does
not matter. Hence, swapping randomly some configurations is equivalent to the usual crossover
operation. Additionally, doing so ensures that the individuals are having the same sizes during the
whole evolution process. Crossover operation results in two offsprings. These are then mutated
according to the mutation operation as depicted by Figure 7.2. In mutation operation, a configuration
is randomly selected from the individual and replaced by a randomly selected configuration (from the
space of all the valid configurations).

Besides the above operations, the proposed approach incorporates two additional operations. These
are the elitism and diversify operations. Elitism selects the best e individuals of one population
and includes them directly to the new one. Diversify operation adds one new individual, randomly
produced directly into the new population. This ensures the diversity of the population individuals
during the evolution process.

7.2.3 The objective function

The proposed approach is based on an objective function F(x), specially designed for the SPL testing
context. As introduced in Chapter 2, Section 2.3.3, F is a vector composed of the following k = 3
objective functions F1, F2 and F3.

1. Maximization of the 2-wise coverage. This objective aims at ensuring that the selected configu-
rations have the highest possible level of 2-wise coverage:

F1(x) = cov(x),

where cov is a function that evaluates the number of pair of features covered by x = {C1, ..., Cm}.

Parents Offsprings
Config. (gene)

Individual
(config. suite)

Figure 7.1: Crossover operation. A random number of l configurations are selected in the smallest parent.
Each of them is swapped with a random configuration selected from the other parent to produce the two
offsprings.
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Offspring Mutated offspring

Configuration 
space

Config. (gene)

Individual 
(config. suite)

Figure 7.2: Mutation operation. A random configuration is selected from the offspring and replaced by a
configuration randomly selected from the configuration space.

2. Minimization of the number of configurations. Here, the objective is to test the minimum
number of configurations:

F2(x) = card(x),

where card is a function that returns the number of configurations m of x = {C1, ..., Cm}.

3. Minimization of the testing cost. This objective function aims at minimizing the cost of testing
the configurations:

F3(x) = cost(x),

where cost is a function returning the cost of testing these x = {C1, ..., Cm} configurations.

In order to evaluate F, each objective function is normalized so that they have the same magnitude
using the following formula [MA04]:

Fi(x)− F ∗i
Fmax

i − F ∗i
,

where F ∗i is the utopia point and Fmax
i the maximum objective functions values. In addition,

the objective max F1 is transformed into a minimization problem min(−F1) in order to deal with
minimization problems only. As a result, each objective function returns a value that holds between 0
and 1, where 0 means that the objective is perfectly fulfilled. To evaluate F, each function is assigned
a weight wj , where

∑k
j=1 wj = 1. Thus, the fitness of each individual I = {C1, ..., Cm} is computed

using a weighted sum as follows:

F(I) =
∑k

j=1 wjFj(I).

7.2.4 Overview of the approach

The technique is formalized in Algorithm 5. Informally, this approach starts by creating an initial
random population (lines 3 to 14). The size of the population is specified by the user as long as the
maximum size of an individual. Each individual is a set of 1, ...,m configurations randomly selected
from the space of all the configurations that are valid towards the FM (lines 6 to 11). The objective
function is then evaluated for each individual of the initial population (line 12).

The second step of the algorithm is the evolution of the population into a new one (lines 15 to 46).
First, the elitism operation is performed (lines 17 to 19). Then, one random individual is created,
evaluated and added to the new population to ensure having new configurations (lines 20 to 27).
This is the diversity operation. The next steps ares crossover and mutation. To complete the new
population until reaching its size n, individuals are created using crossover and mutation operators.
The crossover (lines 29 and 30) aims at creating two offsprings from their selected parents. The two
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7.2. The multi-objective configuration generation approach

Algorithm 5 Multi-objective configuration suite generation
input: t, n, m, e < n,Cmutation, w1, .., wk, fm . t is the time or number of iterations, n is the population size, m
is the maximum individual size, e is the number of individuals involved in elitism, Cmutation is the probability to
mutate one individual, w1, .., wk are the respective weights of each objective function F1, .., Fk and fm is the FM.
output: x = {C1, ..., Cm} . Solution (an Individual)
x← ∅
pop← ∅ . Population is a set of individuals
while card(pop) < n do

s← random integer from 1, ..., m
I ← ∅ . An individual is a set of s configurations
while card(I) < s do

P ← random configuration(fm) . Using a SAT solver
I ← I ∪ {P}

end while
Evaluate F(I) =

∑k

j=1 wjFj(I)
pop← pop ∪ {I}

end while
while elapsed time or number of iterations < t do

newP op← ∅
while card(newP op) < e do

newP op← newP op ∪ {{I} | I ∈ pop ∧ I /∈ newP op ∧min F(I)}
end while
s← random integer from 1, ..., m
I ← ∅
while card(I) < s do

P ← random configuration(fm) . Using a SAT solver
I ← I ∪ {P}

end while
Evaluate F(I) =

∑k

j=1 wjFj(I)
newP op← newP op ∪ {I}
while card(newP op) < n do

Iparent1, Iparent2 ← selection(pop) . Selected according to a fitness proportionate selection method
Ichild1, Ichild2 ← crossover(Iparent1, Iparent2)
C1, C2 ← random real number from [1, 2]
if C1 ≤ Cmutation then

mutate(Ichild1)
end if
if C2 ≤ Cmutation then

mutate(Ichild2)
end if
Evaluate F(Ichild1) =

∑k

j=1 wjFj(Ichild1)

Evaluate F(Ichild2) =
∑k

j=1 wjFj(Ichild2)
newP op← newP op ∪ {Ichild1)} ∪ {Ichild2)}

end while
while card(newP op) > n do

newP op← newP op \ {{I} | I ∈ newP op ∧max F(I)}
end while
pop← newP op

end while
x← I | I ∈ pop ∧min F(I)
return x

parents are selected using a fitness proportionate selection, also known as roulette wheel selection.
The mutation occurs on the offsprings with a certain probability fixed by the user (lines 32 to 37).
The fitness of these two offsprings is then evaluated and these two new individuals are added to the
new population (lines 39 to 40).

Finally, the new population is reduced to the initial population size (lines 42 to 44) and the current
population is replaced by the new one (line 45) and it continues to the next generation (line 46). When
the algorithm terminates, the individual that has the best fitness, i.e. the one with the minimum F
value is returned (line 47).
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Table 7.1: Feature models used in the case study.
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#Features 24 32 41 52 60 71 88 94

#Configurations 18,176 73,728 6,912 331,776 3.87×109 4.5×1013 1.65×1013 2.32×107

2-sets 833 1,448 2,592 3,746 6,189 7,528 13,139 11,075

7.3 Case study

In this section, the proposed multi-objective configuration generation approach is assessed on a set of
FMs. The objective of this case study is to answer the two following research questions:

• [RQ1] Is F capable of leading to a fulfillment of the three objectives? In other words, does
the minimization of F results in a maximization of F1 (or a mininimization of (−F1)), a
minimization of F2 and a minimization of F3?

• [RQ2] How does the multi-objective generation technique compare with a random one?

Answering the first question amounts to evaluate whether the objective function F is capable of
improving the studied objectives. We expect to see a decreasing trend in all three objectives in
relation to population generations. In practice, this means that a better trade-off can be achieved.
This trade-off leads to a higher 2-wise coverage, less configurations and a lower cost. Since no other
approach takes into account these objectives at the same time, our second question aims at comparing
the two of them when keeping the other one set, to enable the comparison with random test suite
generation. Hence, we select random configuration sets of a) the same size and b) achieving the same
2-wise coverage as our approach. If, for the same number of configurations, our approach achieves to
provide a lower cost and higher 2-wise coverage than the random set, we can consider it as being
a better one. Similarly, it will be successful if it provides less configurations and a lower cost than
random for a certain level of 2-wise coverage.

To answer these questions, an experiment composed of 8 FMs of varying sizes was conducted. We
applied our approach on these FMs to evaluate the population evolution and to compare it with a
random approach. All the employed FMs were taken from the Software Product Line Online Tools
(SPLOT) repository [MBC09] and have been widely used in literature. The FMs details are recorded
in Table 7.1. For each subject FM, the number of features, the number of configurations that can
be configured and the number of valid pairs are presented. For each FM, we randomly assigned a
value between 1 and 10 to all non-mandatory features to represent the cost value of the features, as
presented in Chapter 2, Section 2.1.3.3. Further details on the conducted experiment are given in the
following subsections.

7.3.1 Approach parameters

Since objective F1 results in selecting a higher number of configurations and F2, F3 results in selecting a
lower number of configurations, we assigned the following weights: w1 = 0.5 for F1 and w2 = w3 = 0.25
for F2 and F3. This assignment represents the balanced between the studied objectives as set for
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Table 7.2: Evolution of the objective function F and the sub-objectives from the initial generation of the
multi-objective approach to the final one (500 generations). The final and initial values are the average
between the 30 runs. The p-value is the results of the Mann-Whitney U Test between the 30 first initial
values and the 30 final ones.

F F1: 2-wise cov. (to maximize) F2: # config. (to minimize) F3: cost (to minimize)
Initial Final p-value Initial Final p-value Initial Final p-value Initial Final p-value

C. Strike FM 0.163 0.115 <0.001 819.7 819.63 0.79 15.46 14.466 0.176 658.13 369.90 <0.001

SPL SimulES 0.163 0.136 <0.001 1431.4 1439.03 0.003 14.33 12.8 <0.001 906.73 680.66 <0.001

DS Sample 0.189 0.172 <0.001 2364.2 2382.9 0.07 31.866 27.7 <0.001 1040.2 887.96 <0.001

Elec. Drum 0.146 0.132 <0.001 3633.6 3665.06 <0.001 18.7 17.4 0.04 1221.96 1079.6 0.001

Smart Home 0.177 0.138 <0.001 6041.46 6056.66 0.60 17.7 17.03 0.33 2282.86 1537.46 <0.001

Video Player 0.162 0.135 <0.001 7430.66 7428.76 0.20 15.13 13.86 0.011 2000.63 1443.86 <0.001

Model Trans. 0.175 0.153 <0.001 12733.73 12788.1 0.387 17.96 17.16 0.48 3522.5 2829.36 <0.001

Coche Eco. 0.169 0.154 <0.001 10560.26 10618.06 0.039 21.13 19.66 0.19 2083.1 1761.63 <0.001

our experiment. It is noted that our approach is not limited to this balance. Thus, the tester may
set a different balance according to his needs. The population size has been set to n = 100 and
the maximum size of an individual (a potential solution) has been set to m = 100. The mutation
probability Pmutation has been set up to 0.05 and the elitism value e to 5. Finally, the approach has
been limited to run for t = 500 generations.

7.3.2 Evaluation of the objective function F (research question 1)

7.3.2.1 Setup

We performed the multi-objective configuration generation 30 times per FM using the above-mentioned
parameters. For each of the 30 runs, we measured the initial values (at generation 1) and the final
values (at generation 500) of both the 3 sub-objectives and the objective F.

To evaluate whether these differences are statistically significant, we followed the guidelines suggested
by Arcuri and Briand in [AB11] by performing a Mann-Whitney U Test. It is a non-parametric
statistical hypothesis test for assessing whether one of two samples of independent observations tends
to have larger values than the other. We obtain from this test a probability called p-value which
represents the probability that the two samples are equal. It is conventional in statistics to consider
that the difference is not significant if the p-value is higher than the 5% level. The experiments
involving this statistical test used two-tailed tests.

7.3.2.2 Results

Table 7.2 presents per FM the average values on the 30 runs for each of the objective and for F. F1
is the number of pairs covered by the generated configurations (to maximize), F2 is the number of
configurations (to minimize) and F3 is the cost of testing the generated configurations (to minimize).
F is the compromised between the 3 objectives. From this table, one may observe that final values
of both the 3 objectives and the objective function are better than initial one, i.e. decreasing for
F2, F3 and F and increasing for F1 since it’s a maximization. This underlines that a decreasing in
F leads to a better fulfillment of each objective. These difference are most of the time statistically
significant with p-values lower than 0.05 or highly significant with p-values lower than 0.001, fact

93



Chapter 7. Handling multiple testing objectives targeting a whole configuration suite

which demonstrates the appropriateness of the objective function with only 500 generations of the
algorithm.

Besides, Figure 7.3 depicts the evolution of the objective function F and the normalized objective
function over the generations of the algorithm. Since all the three objectives are transformed into
minimization problems, i.e. lower values of the objective functions represent better solutions to
the problem, this figure clearly shows the decreasing trend of each objective function. It therefore
demonstrates that F leads to a better solution regarding all the examined objectives.

7.3.2.3 Answering research question 1

The results presented in the previous section clearly show the ability of the objective function to
fulfill the three studied objectives. In particular, F is capable of finding better solutions for all the
objectives under investigation. While some differences may not be statistically significant, recall that
the approach is a compromise between the conflicting objectives. It therefore tends to compromise
the 3 objectives according the w1, w2 and w3 parameters. The overall objective F has always highly
statistically significance difference, showing that F clearly guides the population generation. Finally,
it must be mentioned that the proposed approach achieves the above results using only a small
number of generations (500 generations). This can be viewed as an achievement of the approach since
search-based approaches do require thousands of executions in order to be effective [HM10].

(a) F (b) −F1

(c) F2 (d) F3

Figure 7.3: Evolution of the objective function F and each normalized sub-objectives (to be minimized)
during the 500 generations of the multi-objective approach.
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7.3.3 Comparison with Random (research question 2)

7.3.3.1 Setup

To assess our approach, we compared it with a baseline. To do so, we used two baseline comparison
basis. In the first one, we selected random sets of configurations having the same F1 value as our
approach. In the second one we selected random configuration sets having the same F2 value as
our approach. The F1 comparison basis aims at evaluating how many configurations for which
cost are provided by the examined approaches (baseline and proposed) to achieve the same level
of 2-wise coverage. The F2 comparison basis evaluates the 2-wise coverage and the cost induced
by the generated configurations for the same number of configurations. In the end, for each run of
our approach, two random runs have been performed: the first one by setting F1 as the comparison
basis and the second one using F2. The conducted experiment (including both the baseline and the
proposed approach) was independently repeated 30 times.

To evaluate whether the differences are significant, we performed a Mann-Whitney U Test, as presented
in Section 7.3.2.1. For each comparison (F, F2 and F3 on F1 comparison basis and F, F1 and F3 on
F2 comparison basis), we got one p-value per FM, i.e. 8 in the total. Each p-value results from the
comparison between the 30 values obtained on the 30 runs by the proposed approach with those
obtained at random.

7.3.3.2 Results

Table 7.3 records the comparison between our configuration generation approach and the baseline
one based on the F1 and the F2 comparison basis. For each FM and each comparison basis, the
average, minimum and maximum values of F and the three objectives F1, F2 and F3 one the 30 runs
are presented. F1 represents the number of pairs covered by the generated configurations (to be
maximized), F2 represents the number of configurations (to be minimized) and F3 represents the
cost of testing the generated configurations (to be minimized). From this table, it is clear that the
proposed approach performs better than a random one. For instance, for the Smart Home v2.2 FM
on the F1 comparison basis (i.e. for achieving the same 2-wise coverage), the proposed approach

−F1 F2

F3

b

b

b

Random
Multi-objective

b

b

b

0

(a) Same 2-wise coverage (F1 basis)
−F1 F2

F3

b

b

b

b

b

b Random
Multi-objective

0

(b) Same number of configurations (F2
basis)

Figure 7.4: Normalized sub-objectives (to be minimized) according to F1 and F2 comparison basis. Values
closer to 0 represent better solutions. These values are the average on all the feature models for all the 30
runs of each approach. The length of each axis is 1.
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Table 7.3: Comparison between the multi-objective approach and the random one. For each feature model,
the values of the objective functions studied and F are represented. F1 is the number of pairs (to be
maximized), F2 is the number of configurations (to be minimized) and F3 is the cost (to be minimized). The
comparison with random has been made by fixing either F1 or F2 on 30 runs per approach.

Multi-objective approach Random
avg min max avg min max

F (to min.) 0.115 0.107 0.122 0.173 0.154 0.2
Same 2-wise coverage (F1 basis) F2 (to min.) 14.466 11 17 18.833 12 28

C. Strike FM
F3 (to min.) 369.9 276 440 832.433 512 1,218
F (to min.) 0.115 0.107 0.122 0.181 0.155 0.238

Same # of configurations (F2 basis) F1 (to max.) 819.633 803 828 806.833 763 828
F3 (to min.) 369.9 276 440 665.13 510 889

F (to min.) 0.136 0.13 0.14 0.173 0.159 0.187

SPL SimulES
Same 2-wise coverage (F1 basis) F2 (to min.) 12.8 10 15 18.966 14 26

F3 (to min.) 680.666 567 813 1,234.8 940 1,656
F (to min.) 0.136 0.13 0.14 0.177 0.16 0.20

Same # of configurations (F2 basis) F1 (to max.) 1,439.033 1,429 1,446 1,411.066 1,367 1,445
F3 (to min.) 680.666 567 813 859.333 680 1,039

F (to min.) 0.172 0.169 0.177 0.214 0.182 0.302

DS Sample
Same 2-wise coverage (F1 basis) F2 (to min.) 27.7 22 34 44.966 32 83

F3 (to min.) 887.966 700 1,106 1,469.8 1,024 2,716
F (to min.) 0.172 0.169 0.177 0.214 0.195 0.246

Same # of configurations (F2 basis) F1 (to max.) 2,382.9 2,328 2,428 2,236.366 2,093 2,362
F3 (to min.) 887.966 700 1,106 902.9 725 1,121

F (to min.) 0.132 0.130 0.133 0.155 0.142 0.173

Elect. Drum
Same 2-wise coverage (F1 basis) F2 (to min.) 17,4 14 20 24.5 17 32

F3 (to min.) 1,079.6 872 1,255 1,645.533 1.165 2,210
F (to min.) 0.132 0.130 0.133 0.155 0.144 0.180

Same # of configurations (F2 basis) F1 (to max.) 3,665 3,628 3,693 3,585.133 3,458 3,661
F3 (to min.) 1,079.6 872 1,255 1,174.7 926 1,367

F (to min.) 0.138 0.133 0.144 0.191 0.166 0.234
Same 2-wise coverage (F1 basis) F2 (to min.) 17.033 12 20 21.966 15 36

Smart Home
F3 (to min.) 1,537.466 1,195 1,836 3,016.533 1,974 5,184
F (to min.) 0.138 0.133 0.144 0.19 0.166 0.223

Same # of configurations (F2 basis) F1 (to max.) 6,056.666 5,973 6,107 5,976 5,756 6,087
F3 (to min.) 1,537.466 1,195 1,836 2,330.4 1,532 2,872

F (to min.) 0.135 0.128 0.138 0.167 0.152 0.188

Video Player
Same 2-wise coverage (F1 basis) F2 (to min.) 13.866 11 16 16.5 14 24

F3 (to min.) 1,443.866 1,230 1,687 2,2236.5 1,858 3,339
F (to min.) 0.135 0.128 0.138 0.173 0.159 0.208

Same # of configurations (F2 basis) F1 (to max.) 7,428.766 7,739 7,468 7,341.233 6,925 7.471
F3 (to min.) 1,443.866 1,230 1,687 1907.433 1,467 2,444

F (to min.) 0.153 0.149 0.158 0.185 0.176 0.199
Same 2-wise coverage (F1 basis) F2 (to min.) 17.166 14 21 20,733 18 25

Model Trans.
F3 (to min.) 2,829.366 2,353 3,319 4,325.166 3,588 5,304
F (to min.) 0.153 0.149 0.158 0.187 0.174 0.199

Same # of configurations (F2 basis) F1 (to max.) 12,788.1 12,657 12,902 12,595.3 12,262 12,815
F3 (to min.) 2,829.366 2,353 3,319 3,556.166 2,742 4,509

F (to min.) 0.154 0.151 1.158 0.186 0.172 0.217
Same 2-wise coverage (F1 basis) F2 (to min.) 19.666 16 24 29.3 20 41

Coche Eco.
F3 (to min.) 1,761.633 1383 2153 2,984,3 2,051 4,384
F (to min.) 0.154 0.151 1.158 0.188 0.167 0.207

Same # of configurations (F2 basis) F1 (to max.) 10,618 10,492 10,726 10,302 10,040 10,553
F3 (to min.) 1,761.633 1383 2153 2,016.333 1,631 2,404
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proposes on average around 17 configurations with a cost of ≈ 1,537 where a random technique
requires around 22 configurations with a cost of ≈ 3,016.

Figure 7.4 depicts the achieved values for each objective for both basis of comparison. The values are
the average on all the FMs for the 30 runs. Here, the smallest triangle signifies a better solution since
each normalized objective is a function to be minimized. An objective value equals to 0 means that
this objective is perfectly fulfilled. The length of the axis of each objective is 1. This figure shows
that a) for the same 2-wise coverage, the proposed approach requires less configurations with a lower
cost and b) for the same number of configurations, our approach provides a higher 2-wise coverage
and a lower cost compared to random configurations.

Finally, the results of the statistical test are depicted by Figure 7.5. It presents, for each comparison,
the distribution of the 8 p-values (one per FM). Each p-value is the result of the comparison between
the 30 values obtained for each objective during each run of the proposed and random approaches.
From this figure, one may observe that all the p-values are lower to 0.001, fact which denotes the a
high statistical difference between the results achieved by our approach compared to the results of
the random one.

7.3.3.3 Answering research question 2

We compared the multi-objective configuration generation approach with a baseline technique using
F1 and F2 as a basis comparison. In all the cases, the objectives are better fulfilled by our approach,
as demonstrated by the results of Section 7.3.3.2. Overall, for the same 2-wise coverage, the approach
selects less configurations with a lower cost. For the same number of configurations, the approach
provides a higher 2-wise coverage at a lower cost. In addition, the differences between the objectives
values reach by our technique and the values reached by the baseline are statistically highly significant,
fact which demonstrates the effectiveness of the approach.

7.4 Threats to validity

The conducted experiments involve potential threats to validity. First, there is a threat regarding
the generalization of the results reported in this study. Indeed, a different set of FMs might output

Figure 7.5: Distribution of the p-values for the comparison with random. For each comparison (F, F2 and
F3 on F1 comparison basis and F, F1 and F3 on F2 comparison basis), the 8 p-values (one per feature model)
are represented with a boxplot. Each p-value has been obtained by comparing the 30 values obtained on the
30 runs for each approach.
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different results. We used a set of 8 FMs widely used in literature with different size and level of
complexity to reduce this threat and to ensure that the FMs used form a good sample.

Additional threats can be identified due to a) to our implementation, which might contains errors
that can affect the presented results and b) the performed experiments. To overcome this issue, we
divided our implementation into subroutines to minimize the potential errors and we make it publicly
available. We also repeated the conducted experiments independently for 30 times to avoid any risk
due to random effects, like the fortunate selection of the (nearest) optimal solution.

7.5 Conclusions

Optimizing different objectives is a hard problem due to the presence of conflicts between them.
For example, minimizing the number of tests is in conflict with the maximization of their 2-wise
coverage since generally more tests lead to a higher coverage. This chapter tackled this problem by
proposinga generalized search-based approach handling multiple testing objectives. Finally, to enable
the reproducibility of our results, we make the source code of our approach and the data used for the
experiments publicly available at http://research.henard.net/SPL/SPLC_2013/.
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8
Assessing configurations with

mutation and application to
similarity testing

The previous parts aimed at generating configurations. The following chapters introduce way to
evaluate them prior testing. In this chapter, a mutation analysis approach performed on feature model,
which allows evaluating the quality of configurations, is presented. The similarity heuristic presented
in Chapter 4 is also evaluated.

This chapter is based on the work that has been published in the following paper:

• Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le Traon.
Assessing software product line testing via model-based mutation: An application to similarity
testing. In Software Testing, Verification and Validation Workshops (ICSTW), 2013 IEEE
Sixth International Conference on, pages 188–197. IEEE, 2013
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Chapter 8. Assessing configurations with mutation and application to similarity testing

8.1 Introduction

The underlying idea of this chapter is to use the information provided by FMs to evaluate the quality
of configurations. In SPL context, mutants can be used to either produce configurations, as performed
in Chapter 5, or to evaluate them, which is the objective of this chapter. This leads to our first RQ:

[RQ1] How can mutation analysis be performed on model-based SPLs in order to evaluate the
configurations quality?

The use of mutation in literature is twofold. First, it has been used to generate tests [DO91, PM12].
Second, it has been used to evaluate other testing approaches [ABLN06, ABL05]. We focus on the
second part. In our context, a configuration suite represents a set of configurations and a mutant
can be considered as a fault. In model-based testing, it has been found that dissimilar configuration
suites have a higher fault detection power than similar ones [HB10]. This similarity heuristic can be
used to reduce the size of the configuration suites by removing similar configurations, as shown in the
Chapter 4. This approach is particularly useful since for SPL, the number of configurations to test is
usually enormous, with potentially billions of possible configurations to test [McG10]. Moreover, the
benefit of this heuristic has not been thoroughly assessed in the context of SPL testing. It leads to
our second RQ:

[RQ2] Do dissimilar configuration suites have a higher mutant detection rate in the context of SPL
and FM testing?

To answer RQ1, we introduce a mutation analysis for SPLs based on FMs. Thus, we produce different
erroneous variants of the original FM by introducing possible defects. Then, we evaluate configuration
suites generated from the original FM towards the modified FMs. To answer RQ2, we use a similarity
heuristic [HPP+12] to compare two configurations and to evaluate the similarity degree of a given
configuration suite. An experiment conducted on both similar and dissimilar configuration suites
towards FMs of different size demonstrate the higher ability of dissimilar configuration suites to detect
the defect embodied in the modified FMs. Further, the validity of a similarity-driven prioritization
technique [HPP+12] is also evaluated.

Contributions of this chapter. In brief, the present chapter provides the following contributions:

• A mutation analysis approach for SPLs based on FMs,

• An experimentation performed on real FMs from small to large scale ones, which (a) confirm
the hypothesis that dissimilar configuration suites have a higher mutant detection rate than
similar ones and (b) assess a similarity-driven prioritization technique.

The remainder of this chapter is organized as follows: Section 8.2 details the mutation testing
and similarity approaches. Section 8.3 reports on the conducted experiments. Finally, Section 8.4
concludes the chapter.
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8.2 Approach

8.2.1 The mutation analysis approach for evaluating configurations

In this chapter, we introduce a mutation testing approach for SPLs based on FMs. The approach
works as follows. From a FM represented as a Boolean formula, we produce several erroneous versions
of this model by applying mutant operators on the clauses of the formula. These erroneous versions
of the original FM are the mutants. Then, using a SAT solver [LBP10], we generate configurations
from the original FM and we check their validity towards the mutants. This evaluation is performed
by checking whether the generated configurations satisfy or not the Boolean formula of the mutants.
This process allows evaluating the quality of the configuration suite through the computation of the
MS. The approach is depicted by Figure 8.1.

We propose two mutation operators which perform at the clause level of the Boolean formula of
the FM. These two operators are summarized in Table 8.1. The first operator takes a clause ci

and randomly change a literal of this clause into its negation. As a result, this operator alters an
existing clause of the FM formula. The second operator aims at creating two clauses from a given
one by replacing one of the disjunction operator in this clause by a conjunction operator. Thus, this
second operator creates two clauses from an existing one, increasing the total number of clauses of
the Boolean formula by one.

8.2.2 configuration suite generation

We use a SAT solver [LBP10] to generate configurations randomly from the configuration space using
the unpredictable approach described in Chapter 4. configurations randomly generated were found to
be dissimilar due to the large size of the search space. Besides, to generate similar configurations,
one configuration is randomly selected from the search space of all the valid configurations. Then,
adjacent configurations to the randomly selected one are retrieved. These are configurations sharing
many selected or unselected features in common.

FM
...

1. Mutation 
operators

2. SAT
solver

Configuration suite
(m configurations)

4. Mutation score = 
number of mutants killed
total number of mutants

Mutants

3. Evaluation 
towards the mutants 
(validity check)

n21

Figure 8.1: Mutation analysis approach for evaluating configurations.
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Table 8.1: Mutation operators for feature models. The first operator negates one of the variable of the
constraint. The second operator splits the constraints into two by removing one of the disjunction operators.

Input (FM clause) Applies on Result

ci = f1 ∨ ... ∨ fk ∨ ... ∨ fm a literal: fk, k ∈ [1,m] c′
i = f1 ∨ ... ∨ ¬fk ∨ ... ∨ fm

ci = f1 ∨ ... ∨ fk ∨ ... ∨ fm a disjunction operator c′
i = f1 ∨ ... ∨ fk and c′′

i = fk+1 ∨ ... ∨ fm

Table 8.2: 12 Various size feature models.
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#Features 24 41 52 60 71 88 94 172 290 1,244 1,396 6,888

# Config. 18,176 6,912 331,776 3.9E9 4.5E13 1.7E13 2.3E7 1.1E27 4.5E49 N/A N/A N/A

8.2.3 Evaluation of the quality of the configuration suite

Here, we try to link the MS of the examined configuration suites with the quality of the configuration
suite in terms of dissimilarity between the configurations. To this end, w use the similarity heuristic
and the prioritization technique respectively presented in Chapter 4, Section 4.2 and Algorithm 2.

8.3 Experiments

In this section, the mutation testing approach of FMs and the evaluation of the quality of the
generated configuration suites are assessed. The experimental study employs 12 real FMs from two
common repositories [MBC09, lin]. These FMs are recorded in Table 8.2. It presents, for each FM,
the number of features it contains and the total number of configurations that can be configured from
the model.

8.3.1 Evaluation of the mutation score depending on the type of configurations

The first experiment aims at evaluating the impact of the quality of the configuration suite on the
MS. In other words, the objective is to evaluate whether dissimilar configuration suites kill more
mutants than similar ones.

8.3.1.1 Setup

We generated 100 mutants for each of the 12 FMs used in this case study. The chance to produce
a mutant with one of the two mutation operators was set to 0.5. We generated three type of
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8.3. Experiments

Table 8.3: Mutation score achieved with different types of configuration suites (%).
#Config. 2 10 50
Type Dissim. Sim. Dissim. Half Sim./Dissim. Sim. Dissim. Half Sim./Dissim. Sim.
avg 69.50 53.02 82.29 80.09 64.40 84.83 84.44 76.86

C. Strike min 54 31 77 75 45 83 83 63
max 77 71 85 84 75 85 85 84
avg 50.64 35.91 69.26 64.71 52.72 88.67 86 77.07

DS Sample min 46 22 60 56 39 81 76 66
max 58 50 81 75 63 90 90 90
avg 63.59 45.92 81.31 78.99 60.04 83 83 80.05

Elec. Drum min 55 33 75 73 45 83 83 76
max 69 58 83 83 69 83 83 83
avg 78.18 58.83 93.13 91.71 66.49 94 93.86 77.62

Smart Home min 62 34 89 85 46 94 93 63
max 90 76 94 94 79 94 94 86
avg 69.16 53.64 82.50 80.70 58.36 84.02 83.64 67.68

Vid. Player min 31 25 77 57 29 83 77 34
max 81 72 85 84 73 86 85 77
avg 68.69 52.33 83.17 80.24 54.21 84 83.99 58.94

Model Tran. min 60 39 80 66 41 84 83 45
max 74 65 84 84 66 84 84 73
avg 72.66 59.21 83.93 80.40 60.90 88.94 88.32 66.46

Coche Eco. min 67 49 79 71 47 87 85 55
max 78 68 88 86 69 89 89 74
avg 59.58 45.13 76.45 72.68 47.47 82.50 80.95 56.48

Printers min 38 21 72 60 31 80 77 38
max 70 60 81 77 63 84 83 66
avg 66.27 48.33 86.42 82.80 49.09 89.23 88.70 54.18

Elec. Shop. min 55 38 80 76 38 88 85 40
max 77 60 90 89 63 90 90 67
avg 60.35 48.32 77.83 73.22 48.41 83.49 81.13 49.64

eCos min 49 38 74 65 38 77 76 40
max 68 65 86 83 56 87 87 57
avg 26.82 18.62 40.91 36.55 18.89 46.89 45.28 19.14

FreeBSD min 10 5 32 25 5 45 40 7
max 37 32 46 43 29 48 48 32
avg 10.14 7.14 15.72 13.97 7.40 23.21 21.40 7.29

Linux min 7 3 11 10 4 14 14 4
max 17 16 24 22 16 35 34 10

configuration suites: configuration suites containing only dissimilar configurations, configuration
suites containing half similar and dissimilar configurations, and configuration suites containing
only similar configurations. Different size of tests suites were generated for each of these types:
configuration suites of 2, 10 and 50 configurations. We evaluated the configuration suites towards the
100 mutants to compute the MS. The generation of the configuration suites and the evaluation of the
MS has been repeated 100 times.

8.3.1.2 Results

The results are recorded in Table 8.3. It presents, for each FM, the average, minimum and maximum
MS achieved for the different size and types of configuration suites. Following this table, one may
observe that the MS for the configuration suites of dissimilar configurations is higher than the tests
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suites, containing both similar and dissimilar configurations, and the latter is higher than similar
configuration suites. In some cases, like for the Linux kernel 2.6.28.6 FM with configuration suites of
50 configurations, the MS achieved by dissimilar configuration suites is more than three time bigger
than the MS reached by similar configuration suites.

To evaluate whether these differences are statistically significant, we followed the guidelines suggested
by Arcuri and Briand in [AB11] by performing a Mann-Whitney U Test. It is a non-parametric
statistical hypothesis test for assessing whether one of two samples of independent observations tends
to have larger values than the other. We obtain from this test a probability called p-value which
represents the probability that the two samples are equal. It is conventional in statistics to consider
that the difference is not significant if the p-value is higher than the 5% level.

For each size of configuration suites and for each of the 100 executions, we took the MS achieved by
the dissimilar and similar configuration suites for each FM. We thus have on the one hand the 12 MSs
for the similar configuration suites, and on the other hand the 12 MSs of the dissimilar configuration
suites. It leads to 100 p-values corresponding to the number of executions performed. The results are
presented in Figure 8.2. It represents via a box plot the distribution of the 100 p-values resulting of
the Mann-Whitney U test between the MS achieved by similar and dissimilar configuration suites for
the 100 executions. From this figure, it can be observed that the difference is statistically significant
for configuration suites of 10 and 50 configurations since all the p-values are lower to the significance
level of 5%.

8.3.2 Impact of the similarity-based prioritization on the mutation score

Here, the objective is to assess whether the similarity-driven prioritization [HPP+12] is effective. In
other words, we want to evaluate whether k configurations selected according to the prioritization
technique presented in Section 8.2 kill more mutants than k configurations randomly prioritized.
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Figure 8.2: Distribution of the 100 p-values resulting of the Mann-Whitney U Test between the mutation
score achieved by similar and dissimilar configuration suites for the 100 executions.

106



8.3. Experiments

Table 8.4: Area under curve observed for the two prioritization techniques.
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Similarity 8,346 8,568 8,178 9,277 8,209 8,281 8,730 8,029 8,778 8,081 4,541 2,304.5

Random (min) 7,995 7,666 7,983 9,118 8,010 8,040 8,290 7,615 8,343 7,477 4,014 1,473.5

Random (avg) 8,187 8,119 331,776 9,175 8,143 8,183 8,514 7,802 8,535 7,773 4,240 1,883

Random (max) 8,314 8,473 331,776 9,269 8,205 8,275 8,685 8,022 8,730 8,068 4,531 2,272.5

8.3.2.1 Setup

For each FM, we generated tests suites of 100 configurations containing both similar and dissimilar
configurations. We executed the similarity-driven prioritization technique to prioritize each configura-
tion suite. Then, we applied 100 times a random prioritization of the configurations in order establish
a random ordering of them. Finally, for each number of k configurations selected between 0 and 100,
we evaluated the MS achieved with these k configurations. To compare the prioritization approaches,
the area under curve is evaluated.

8.3.2.2 Results

Table 8.4 presents the area under curve for the similarity and random prioritizations for each FM.
From this table, one can see that the similarity-driven technique bestow a higher area under curve
value than the random one, fact which demonstrates its effectiveness. Indeed, in any cases, the
similarity-driven prioritization achieves the highest area under curve value. Figure 8.3 depicts the
curve of the MS achieved for different number of configurations selected, averaged on the 12 FMs.
This figure also shows the benefit of the similarity-driven prioritization. For instance, a MS of around
80% can be achieved with the similarity-driven prioritization with only around 5 configurations
while the random one requires around 20 configurations. In addition, only around 30 similarity
prioritized configurations are needed to achieve the maximum score of around 85% where the random
prioritization requires 100 configurations.

To evaluate whether the differences between the similarity-driven prioritization technique and the
random one are significant, we performed a Mann-Whitney U Test. For each FM, we compared
the results of the similarity prioritzation with each of the 100 random executions. It thus leads
to 100 p-values per FM, which are represented with box plot in Figure 8.4. From this figure, one
can see that the results are not significantly significant for the small FMs. One explanation is that
only a small number of configurations, e.g. 5 or 10 allows killing most of the mutants, and thus the
remaining configurations don’t kill any new mutants, leading to two samples which are almost the
same. However, for the largest FMs, the difference is significant, with median values greatly below
the significance level of 5%.
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Chapter 8. Assessing configurations with mutation and application to similarity testing

8.3.3 Answering research questions 1 and 2

The mutation testing approach proposed in this chapter aims at evaluating the quality of the tests.
We produced 100 erroneous FMs and we evaluated the fault detection power of different type of
configuration suites generated from the correct FM. The approach uses mutation operators which
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Figure 8.3: Mutation score achieved for the prioritization techniques averaged on the 12 feature models.

Figure 8.4: Distribution of the 100 p-values resulting of the Mann-Whitney U Test between the mutation
score achieved by configurations prioritized with the similarity technique and the 100 random prioritization.
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perform on the Boolean formula of the FM by altering clauses. The results obtained show that the
tests are able to kill some mutants, which makes the approach interesting for testing FMs.

The impact of dissimilar and similar configuration suites on the MS is clear. The results obtained
in this chapter show that dissimilar configuration suites bestow a higher mutant detection rate
than similar ones. Indeed, both the evaluation of the MS depending on the type of tests and the
similarity-driven prioritization showed that dissimilar configurations kill more mutants than similar
ones. In addition, we observed a significant statistical difference between the MS achieved by the
different type of configuration suites, fact which confirm the similarity hypothesis.

8.3.4 Threats to validity

First, there is an external validity threat. Indeed, we cannot ensure that the mutation analysis and
prioritization approaches will output analogous results on different sets of FMs, e.g. larger or more
constrained. To reduce this threat, we used 12 FMs of different sizes, from 24 to almost 7,000 features.
Each of these FM bestow a different number and complexity regarding their constraints.

Besides, an internal validity threat could be due to potential errors in our implementation which
could affect the presented results. To overcome these threats, we divided the implementation into sub
stages. This practice allowed having a better control on each of the steps composing the proposed
approaches. Besides, to avoid any risk due to random effects like coincidental selection of mutants or
tests, we repeated the experiments 100 times.

Finally, whether the defects introduced in the mutants reflects real faults form a construct validity
threat. Mutation has proven to be effective and the mutation operators used performs on the logical
constraints of the FM. These constraints linking the features represent a potential source of errors in
the model’s construction stage.

8.4 Conclusions

In this chapter, we presented a mutation analysis approach for SPLs based on FMs. To the best of our
knowledge, it is the first mutation analysis approach applied in the context of SPLs. In addition, this
approach has been evaluated towards similar and dissimilar configuration suites to evaluate whether
dissimilar configuration suites bestow a higher mutant detection rate than similar ones. The benefit
of dissimilar configuration suite is that they allow to drastically decrease the number of configurations
to test.

Our experiments, performed on 12 real FMs of different size demonstrate the effectiveness of the
approach. In particular, the higher ability of dissimilar configuration suites to kill mutants has been
proven with both the MS and prioritization evaluations. Indeed, dissimilar configuration suites are in
some case able to kill two or three times more mutants than similar configurations. The prioritization
results emphasized the benefit of this heuristic, showing that testing first dissimilar configurations
rather than similar ones allow killing more mutants.
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9
Mutation analysis as a potential

alternative to combinatorial
interaction testing

The previous chapter introduced an approach for assessing configuration suites with model-based
mutation. This chapter evaluates whether the mutation criterion used in Chapter 5 and Chapter 8 can
form a viable alternative to combinatorial testing by evaluation its correlation with fault detection.

This chapter is based on the work that has been published in the two following papers:

• Mike Papadakis, Christopher Henard, and Yves Le Traon. Sampling program inputs with
mutation analysis: Going beyond combinatorial interaction testing. In Proceedings of the 2014
IEEE International Conference on Software Testing, Verification, and Validation, ICST ’14,
pages 1–10, Washington, DC, USA, 2014. IEEE Computer Society

• Christopher Henard, Mike Papadakis, and Yves Le Traon. Mutalog: A tool for mutating logic
formulas. In Proceedings of the 2014 IEEE International Conference on Software Testing,
Verification, and Validation Workshops, ICSTW ’14, pages 399–404, Washington, DC, USA,
2014. IEEE Computer Society
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Chapter 9. Mutation analysis as a potential alternative to combinatorial interaction testing

9.1 Introduction

Mutation as an alternative to CIT. The present chapter applies mutation analysis to the CIT
input model. Thus, it introduces an alternative but more representative measure of the effectiveness
of a test suite. Traditionally, mutation analysis is applied at the program code and aims at evaluating
the quality of a test suite [Off11]. It operates by introducing artificial defects, called mutants, in
the code of the tested program. Thus, multiple versions of the program under test are produced.
Each version contains a defect that is introduced by making a slight modification. The test suites are
then evaluated based on their ability to distinguish the introduced problems [Off11]. Contrary to the
traditional approach, we apply mutation on the input model. Hence, we do not need to execute the
system. We only need to evaluate whether the selected test cases satisfy or violate the altered input
models. The testing process can then be performed based on the selected test cases.

In this chapter, we introduce defects on the model of the program inputs. Thus, we create various
input models, each one containing one defect. We apply this approach in the same way as t-wise
testing is applied. However, instead of measuring the number of covered interactions, we measure
the number of mutated input models that are violated by the selected tests. Therefore, we have test
cases that satisfy all the constraints of the original input model but which violate the constraints of
the mutated ones. The number of the mutated models having constraints violated by the test cases
to the total number of the mutated models represents the effectiveness ability of these tests.

The question that it is investigated here is whether mutation analysis can provide a good indication
about the quality of the test suites. A positive answer to this question will indicate that the proposed
approach is valid and will motivate practitioners to use it. However, as already mentioned, CIT forms
the mainstream approach to select and evaluate such test cases. Thus, another question that need to
be answered is whether mutation analysis provides better estimations than the CIT about the fault
detection ability of the test suites. Therefore, the main contribution of the present chapter is the
comparison of the proposed mutation approach with the CIT one according to their ability to expose
faults. Currently, only a few works investigate the fault detection ability of the interaction testing in
the presence of input constraints and none focusing on mutating the input models.

Contributions of this chapter. We present results of a controlled experiment that involves four
real world programs with input constraints. The utilized programs are widely used in experimental
studies and are accompanied by a set of faulty versions. Therefore, we can evaluate the ability of
the examined approaches to predict the actual fault detection of the selected test suites. This is
performed based on a rank correlation analysis. The findings of the study reveal that both the
mutation and CIT approaches are good predictors of actual fault detection. This is in line with the
previous research on CIT. However, it turns out the the mutation-based approach generally provides
better estimations than CIT. This difference is significant in most of the cases, thus indicating a
strong correlation between code-level faults and the proposed model-level defects.

In brief, the contributions of this chapter are the following:

• We propose a mutation analysis approach applied at the program input level to assess the
quality of test suites,

• We evaluate the correlation between a) the number of interactions covered and b) the number
of the introduced mutants distinguished by a test suite with its actual fault detection. We find
out that the model-based defects have a stronger correlation with code-level faults than the
input parameter interactions.

The remainder of this chapter is organized as follows: Section 9.2 demonstrates the application of
the CIT and the proposed approach through an example and Section 9.3 details them. Sections 9.4
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and 9.5 details the experiment and present its findings respectively. Section 9.6 discusses some issues
regarding the mutation approach. Finally, Section 9.7 concludes the chapter.

9.2 Example

This section introduces an illustrative example to explain how mutation analysis can be applied. The
approach is based on a model of the program inputs, as those typically used by CIT approaches, e.g.,
[PYCH13]. Such a model encompasses the different parameters and the constraints between these
parameters.

Consider the following model M involving three parameters p1, p2 and p3. Each parameter is a
variable of the model. The parameter p1 can take the two values a and b, p2 can take the three values
c, d and e and the last parameter p3 can only take the f value. Thus, the model M is defined as
follows:

M := p1 ∈ {a, b}, p2 ∈ {c, d, e} and p3 ∈ {f}.

Typically, input models involve input constraints between the parameters. For sake of simplicity, we
will first present the approach in the case where there are no input constraints, case 1). Then, the
general case that involves input constraints, case 2), will be demonstrated.

9.2.1 Case 1: absence of input constraints

9.2.1.1 Flattening the model

In order to apply mutation analysis, we flatten this model to a Boolean one denoted as Mb. The
flattened model involves 6 variables instead of three, which corresponds to the values of the parameters:
ap1 , bp1 , cp2 , dp2 , ep2 and fp3 . Each of this variable is Boolean, i.e., it can take only two values,
true or false. We then need the to add to Mb constraints which specify that only one value can be
selected at a time for a given parameter. For instance, ap1 and bp1 cannot be both true because it
would mean that p1 = a and p1 = b at the same time. Following our example, we need to add to Mb

8 following constraints:

(ap1 ⇒ ¬bp1 ), (bp1 ⇒ ¬ap1 ), (cp2 ⇒ ¬dp2 ), (cp2 ⇒ ¬ep2 ), (dp2 ⇒ ¬cp2 ), (dp2 ⇒ ¬ep2 ), (ep2 ⇒ ¬cp2 ),
(ep2 ⇒ ¬dp2 ).
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Figure 9.1: The mutation analysis approach compared to the traditional combinatorial interaction testing.
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Thus, the Boolean model Mb equivalent to M is defined as:

Mb := ap1 ∈ {true, false}, bp1 ∈ {true, false}, cp2 ∈ {true, false}, dp2 ∈ {true, false}, ep2 ∈ {true, false},
fp3 ∈ {true, false}, (ap1 ⇒ ¬bp1 ), (bp1 ⇒ ¬ap1 ), (cp2 ⇒ ¬dp2 ), (cp2 ⇒ ¬ep2 ), (dp2 ⇒ ¬cp2 ), (dp2 ⇒ ¬ep2 ),
(ep2 ⇒ ¬cp2 ), (ep2 ⇒ ¬dp2 ).

9.2.1.2 Creating mutants of the flattened model

The next step consist in creating defective (i.e., mutated) versions of the Mb model. To produce such
a mutated model, we alter one of the constraint of Mb. It creates a different version of this model
where the defect is the change operated on the constraint. This process is repeated several times to
create various mutated versions of Mb. For instance, the constraint C = (ap1 ⇒ cp2) of Mb can be
altered to C ′ = (ap1 ⇒ ¬cp2) while producing a new mutated model from Mb.

In the following, we consider the two following mutants, in which the altered constraint of Mb is
underlined:

• M ′
b := ap1 ∈ {true, false}, bp1 ∈ {true, false}, cp2 ∈ {true, false}, dp2 ∈ {true, false}, ep2 ∈
{true, false}, fp3 ∈ {true, false}, (ap1 ⇒ ¬bp1 ), (bp1 ⇒ ¬ap1 ), (cp2 ⇒ ¬dp2 ), (cp2 ⇒ ¬ep2 ), (dp2 ⇒
¬cp2 ), (dp2 ⇒ ¬ep2 ), (ep2 ⇒ cp2 ), (ep2 ⇒ ¬dp2 ).

• M ′′
b := ap1 ∈ {true, false}, bp1 ∈ {true, false}, cp2 ∈ {true, false}, dp2 ∈ {true, false}, ep2 ∈
{true, false}, fp3 ∈ {true, false}, (ap1 ⇒ ¬bp1 ), (bp1 ⇒ ¬ap1 ), (cp2 ⇒ ¬dp2 ), (cp2 ⇒ ¬ep2 ), (dp2 ⇒
¬cp2 ), (dp2 ⇒ ¬ep2 ), (ep2 ⇒ ¬cp2 ), (ep2 ⇒ fp3 ).

9.2.1.3 Evaluating program inputs

The proposed approach selects program inputs which satisfy the constraints of Mb and at the same
time do not satisfy the constraints of the mutated models. For instance, consider the two following
program inputs:

• I1 = {ap1 = true, bp1 = false, cp2 = true, dp2 = false, ep2 = false, fp3 = true},

• I2 = {ap1 = true, bp1 = false, cp2 = false, dp2 = false, ep2 = true, fp3 = true}.

We simplify the representation of these inputs to consider only the values selected, i.e., equals to
true:

• I1 = {ap1 , cp2 , fp3},

• I2 = {ap1 , ep2 , fp3}.

Both I1 and I2 satisfy Mb. We evaluate each input towards each mutant. I1 satisfies the two mutants,
I2 satisfies the second mutant M ′′b but violates M ′b. Indeed, the underlined constraint of M ′b is
violated: selecting ep2 = true implies selecting cp2 = true, but I2 has ep2 = true and cp2 = false.
We thus identify that the I2 test case is effective in finding the introduced defect. Measuring the
number of such defects found by a test suite serves as an effectiveness measure to our approach. We
can say that I1 did not violated any of the two mutants and that I2 violated half of the mutants.
Thus, with respect to our approach, I2 is more effective.

With respect to CIT, for instance 2-wise interactions, I1 covers 15 interactions. An example of such
an interaction is (ap1 = true, bp1 = false). The total number of 2-wise interactions of the model Mb

is 66. Thus, the CIT measure for I1 is 15
66 . Consider now the two following test suites:

• T1 = {I2},
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• T2 = {I1, I2}.

With respect to our approach, both the test suites are similarly effective since they both violates
one of the two mutants. Thus, we measure 1

2 for both T1 and T2, which is the number of violated
mutants to the total ones.

With respect to CIT, T1 covers 15
66 2-wise interactions while T2 covers 24

66 . As a result, for CIT, the
second test suite is more effective as it covers more interactions than the first one.

9.2.2 Case 2: presence of input constraints

When there are input constraints in the model M , we simply transform them to Boolean ones
and we add them to the constraints of Mb. For instance, suppose M contains the input constraint
((p1 = a)⇒ (p2 = c)). It is transformed into (ap1 ⇒ cp2). Thus, in this case, the Boolean model of
M is:

Mb := ap1 ∈ {true, false}, bp1 ∈ {true, false}, cp2 ∈ {true, false}, dp2 ∈ {true, false}, ep2 ∈ {true, false},
fp3 ∈ {true, false}, (ap1 ⇒ ¬bp1 ), (bp1 ⇒ ¬ap1 ), (cp2 ⇒ ¬dp2 ), (cp2 ⇒ ¬ep2 ), (dp2 ⇒ ¬cp2 ), (dp2 ⇒ ¬ep2 ),
(ep2 ⇒ ¬cp2 ), (ep2 ⇒ ¬dp2 ), (ap1 ⇒ cp2 ).

The added input constraint is underlined. The process then continues similarly as the case 1), by
mutating Mb (see Section 9.2.1.2).

9.3 Test suite evaluation

The global process of the proposed mutation approach is depicted by Figure 9.1. The technique
operates on a model of the program inputs, presented in Section 9.3.1, by creating defective (i.e.,
mutated) model versions. The application of the approach, detailed in Section 9.3.3,is equivalent to
CIT since it uses the same input models. However, instead of measuring the interactions covered by
the test cases, as done by CIT (presented in Section 9.3.2), it measures the ability of the test cases to
distinguish the defective versions.

9.3.1 The program input model

Applying CIT or the proposed approach requires building a model of the program inputs. This
model represents the different test cases that can be derived by combining the program inputs. Thus,
the model encompasses the different parameters of the program, their values, and the constraints
that link them. It can be seen as a set of constraint, where each constraints involves variables (the
parameters), their possible values and how they can be combined.

A constraint regulates the use of the input parameters. For instance, a constraint may denote that
setting a specific parameter pi with a specific value v prevents another parameter pj from taking the
value w. We can formalize this constraint as (pi = v)⇒ (pj 6= w). Thus, a program input composed
of both pi = v and pj = w does not satisfy the constraint since pj should not be set to w when pi is
set to vi. We say that a test case satisfies the model of the program inputs if all the constraints of
this model are satisfied at the same time.
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Each constraint involves several variables that correspond to the parameters of the program. A
variable has a domain which corresponds to the values that the parameter can take. For instance, the
variable pi may take two values v and w. In that case, pi has a domain involving two values, v and
w.

In practice, our approach requires a flattening of the model to make it Boolean. This is a typical
process undertaken by most of the CIT tools, e.g., [CCL03]. It also gives the opportunity to the
mutation approach to produce mutants in the case that no input constraints exists. Instead of having
a model with variables corresponding to parameters, the flattened model contain variables that
represent all the possible values for all the parameters. Each one of these variables can be true or
false, depending on whether this variable is assigned an input value. For instance, if a parameter
can take three different values, the flattening transforms the parameter variable, which has a domain
of three values into three different variables. Doing so transforms the model to a Boolean one as
required by the proposed approach.

9.3.2 The combinatorial interaction testing approach

The CIT approach works by counting the unique number of interactions (or combinations) between
any t parameters values exercised by the test suite. Such interactions are called t-wise interactions,
as they involve combinations between the t parameters. Thus, given the input model, we evaluate
all the possible t combinations of the input parameters. Then, based on the input constraints, we
eliminate the invalid ones, i.e., the combinations that are prohibited by the constraints. Finally, the
effectiveness measure of the test suite is calculated based on the t-wise coverage which is the number
of t combinations that are covered by the test cases.

9.3.3 The mutation approach

The mutation approach operates by altering the Boolean model of the program inputs. It actually
produces defective models by altering the model constraints. Thus, it creates several versions of the
model, called mutants. Each mutant contains only one altered constraint. The constraints are altered
based on a set of syntactic rules called mutation operators. Thus, by applying the mutation operators
on all the model constraints, we end up with the sought set of mutants.

The constraints of the flattened model are Boolean and they are represented as a disjunction between
variables. Thus, each constraint C between k variables has the general form C =

∨k
i=1 vk, where vk

is a variable (corresponding to one parameter’s value) either set to true or false.

We employ the two mutation operators presented in Table 8.1 of Chapter 8. The first operator alters
a constraint by taking one of its variables and negating it. In other words, if the selected variable is
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Figure 9.2: Experimental methodology for comparing the mutation analysis approach with combinatorial
interaction testing.
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true, it becomes false, and conversely. The second operator aims at creating two constraints from
the original one. To this end, one of the disjunction operator in the constraint is replaced by a
conjunction operator. Thus, this second operator splits a constraint into two, increasing by one the
total number of constraints of the model.

A test suite is evaluated based on its ability to distinguish the defective models from the original one.
We refer to the mutants that are distinguished by the test cases as killed and to those that can not
be distinguished as live. However, how can we check whether a mutant is killed or not? To answer
this question, we need to consider that our models are composed of Boolean constraints. Therefore,
the evaluation is straightforward. It is examined whether a test case satisfies the constraints of the
mutant model with a satisfiability (SAT) solver. The mutant is killed when its constraints are violated
by the test case. In the opposite case it is live. It is noted that only the constraints of the mutant
models can be violated. The constraints of the original model must always be satisfied in order to
have valid program inputs. By determining the number of mutants that are killed by all the test
cases, the overall effectiveness measure of the test suite is calculated.

9.4 Experimental methodology

The aims of the conducted experiment are summarized in the following RQs:

• [RQ1] How well does the mutation-based approach evaluate the quality of the selected test suite?

• [RQ2] How well does the CIT approach evaluate the quality of the selected test suite?

• [RQ3] How does the mutation approach compares with CIT?

Answering the first RQ is important in order to substantiate the practical use of mutation. Answering
the second question is important in reinforcing the empirical evidence in favor of CIT.

Now, suppose that mutation and CIT are capable of predicting accurately the fault detection ability
of test suites. In this case, practitioners will be able to evaluate the quality of their test suites. Going
a step further, they will be able to prioritize their tests (by pointing first the test cases that cover
the majority of the interactions or kill most of the mutants), reduce the suites size (by removing
redundant tests) and guide the test generation process (by generating test cases that cover new
interactions or kill additional mutants). However, in this case, which one should be used? This is
our third RQ which aims at identifying which of the two examined approaches should be used in
practice.

9.4.1 Definition of the experiment

To answer the stated RQs, we analyze the ability of test cases to cover t-wise interactions, to kill our
mutants, and to expose code-based faults. We employ four subjects that are accompanied with test
cases and faulty versions (Section 9.4.2). We then sample at random 30 test suites from the initial
test suite of each program. Thus, we sample suites of random size from 4 ≤ n ≤ N , where N is the
size of the initial test suite. The minimum size of 4 test cases per suite has been chosen in order to
have a sufficient sample for the correlation analysis. Then, we measure three metrics. a) the number
of interactions covered, b) the number of mutants killed and c) the number of faults found (Section
9.4.3). These measures are recorded for every test case of the selected suites.

Then, these metrics are examined in order to identify possible correlations between them and to
answer to RQs 1 and 2, Section 9.4.4. To this end, we perform a statistical analysis to quantify these
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correlations. In other words, we try to measure the extent to which the relationship of covering
interactions and killing mutants relates with fault detection. Thus, for each subject program, 30
Kendall rank coefficients are obtained by evaluating the correlation between the killed mutants and
the faults found by the test cases, case denoted as MF, and 30 coefficients are obtained from the
correlation between the t-wise coverage and the faults found. This latter comparison is denoted as
tWF. In this work, we consider t-wise coverage for t = 2, ..., 4.

Finally, we compare the two methods based on the level of correlations, thus, answering to RQ3. An
overview of the followed process is depicted by Figure 9.2.

9.4.2 Subjects

We use the four following programs: flex, gzip, make and sed. These subjects are taken from the
Software-artefact Infrastructure Repository (SIR) [DER05] and their details are presented in Table
9.1. The examined versions of these program were randomly selected. Hence, for each subject, Table
9.1 records its size in uncommented lines of code i, the number of faults per version taken from the
faults matrix provided by the SIR, the number of variables and constraints of its respective model,
the number of mutants and killable (i.e., there is at least one test configuration that cannot satisfy
the faulty model) mutants obtained by applying the mutation operators, the number of the test cases
contained in the initial test suite and the number of t-wise interactions for t = 1, ..., 4.

The input models are taken from the study of Petke et al. [PYCH13]. This study concerns the test
case prioritization according to CIT and thus, their models are well suited for the present study.
These models were built based on the descriptions of the Test Suite Specification Language (TSL)
that are proposed with the utilized programs [PYCH13]. Thus, the parameters and values of these
models represent the program input space. As described in Section 9.3, we transform these models to
Boolean ones in order to evaluate the various test cases.

9.4.3 Evaluating test suites

9.4.3.1 T-wise

Given a test suite, we evaluate its t-wise coverage based on the following process. All the t-wise
interactions between the parameters values covered by the first test case of the suite are recorded.
Then, we consider the second test case and we add all the interactions that are not exercised by
the first one. This process is repeated for all the test cases of the suite and it gives the cumulative
number of unique t-wise interactions covered by each one of suite’ test cases. Thus, given a test suite
of n test cases tc1, ..., tcn, we obtain the t-wise coverage represented by the tuples (tci, ci).

9.4.3.2 Fault detection

Given a test suite, we evaluate its fault detection ability based on the following process. We first
take the faults found by the first test case of the suite by using the fault matrix provided by the
SIR. This matrix contains the faults found by each test case. These faults are not considered while

iMeasured with cloc: http://cloc.sourceforge.net/.
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Table 9.1: The four subjects programs used in the experiments.
Subject flex gzip make sed

v1 9,581 4,604 14,459 -
v2 - 5,092 - -

Uncommented lines of code v3 - - - 7,161
v4 11,470 - - -
v7 - - - 14,177

v1 19 16 19 -
v2 - 7 - -

Faults v3 - - - 6
v4 16 - - -
v7 - - - 4

Model variables 23 29 20 34
Model constraints 43 91 21 143
Model mutants 139 295 63 527
Killable model mutants 139 292 63 373
Test cases 500 159 768 144
All 2-wise interactions 1,035 1,653 780 2,278
All 3-wise interactions 15,180 30,856 9,880 50,116
All 4-wise interactions 163,185 424,270 91,390 814,385
Valid 2-wise interactions 939 1,388 736 1,421
Valid 3-wise interactions 11,478 19,980 8,268 23,075
Valid 4-wise interactions 95,176 194,974 63,475 265,698

evaluating the next test cases. Then, the number of faults found by the second test case is recorded.
This process is repeated for all the test cases of the test suite and provides the cumulative number of
unique faults found by each test case. Thus, given a test suite of n test cases tc1, ..., tcn, we obtain
the number of faults found after executing each test case. It is represented by the tuples (tci, fi).

9.4.3.3 Mutation

We evaluate a test suite according to mutation based on the following process. Initially, the number
of mutants killed by the first test case is determined. These mutants are removed and the second
test case is evaluated according to all the remaining mutants. This process is repeated for the whole
suite. Thus, the process gives the cumulative number of the unique killed mutants after executing
each test case. Hence, given a test suite of n test cases tc1, ..., tcn, we obtain the number of mutants
killed after executing each test case. It is represented by the tuples (tci,mi).

9.4.4 Rank correlation analysis

Evaluating a test suite according to t-wise, fault detection and mutation, as described in the previous
section gives the following information after executing k ≤ n tests of the test suite:

1. The current t-wise coverage achieved after considering the ith test case of the test suite,
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2. The current number of faults found after executing the ith test case of the test suite,

3. The current number of mutated models that cannot be satisfied after considering the ith test
case of the test suite.

Given these three measures, we evaluate whether 1) correlates with 2), whether 3) correlates with 2),
and which of these two correlations is better. In order to evaluate these correlations, we compute the
Kendall τ rank correlation coefficient. This coefficient is considered as the most robust and usefully
interpreted statistical measure for this question [GGZ+13, Ken38, Cli96]. Thus, the coefficient is one
one hand calculated given the correlation between the tuples (tci, ci), (tci, fi) and on the other hand
given the tuples (tci,mi) and (tci, fi).

The Kendall τ is in the range −1 ≤ τ ≤ 1. A coefficient of 1 indicates that the correlation between
the two considered ranking is perfect. A coefficient around 0 denotes that the two observed sample
are independent. Finally, a τ equals to −1 represents the complete absence of correlation between
the two considered rankings.

9.5 Experimental results

This section reports results regarding the ability of the CIT and the mutation approaches to reveal
actual faults. Then, it compares the two approaches.

9.5.1 Correlation analysis (research questions 1 & 2)

Figure 9.3 presents the distribution the Kendall coefficients for all the subject programs. MF denotes
the coefficients resulting from the correlation analysis between the mutants killed and the faults found
by the test cases. The correlation coefficient between the t-wise coverage of the test cases and the
faults found on the program are denoted as tWF, with t = 2, ..., 4.

From these results we can infer three interesting conclusions. First, we observe that both CIT and
mutation strongly correlate with fault detection for all the employed subjects. This is due to the fact
that most of the coefficients are greater than 0.5 (median values) and almost all are at least 0.3, thus
indicating very good correlations. Second, we observe big differences on the correlations between
the subject programs and between the different versions. For example, sed v3 has coefficients close
to 0.5 while gzip v2 is close to 0.2. Similarly, gzip has differences between v1 and v2 where the
coefficients are close to 0.5 and 0.2 respectively. Third, we observe that higher t-values results in
weaker correlations than lower t values in all the examined cases. The next section compares t-wise
and CIT based on these results.

9.5.2 Comparing combinatorial testing and mutation (research question 3)

In order to compare the CIT approach with the mutation one, consider the MF and the tWF
coefficients. From Figure 9.3, it is evident that MF coefficients tend to be closer to 1 than the tWF
ones. Even when they are not very good, such as the case of gzip v2, they are greater than the
tWF coefficients. The difference is big for three out of the 7 cases and always greater to all the tWF
coefficients. This denotes a higher correlation between the mutants and the faults than between the
t-wise coverage and the faults.
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For instance, consider the results for flex v1, depicted by Figure 9.3a. The maximum coefficient τ
is very close to 1. The median τ among the 30 coefficients is above 0.87. It Thus denotes a strong
correlation for the MF case. Regarding the t-WF results, median coefficients are below 0.5, which
denote moderate correlations between t-wise and the faults found by the test cases. Conclusively, it
can be argued that the comparison is in favor of the MF since it gives correlations greater than the
t-WF.

The results presented so far consider the correlation of CIT and mutation with the code-based faults.
However, this correlation may be missleaded by the difficulty of finding the faults. In other words, if

(a) Results for flex v1 and v4. FX denotes flex vX, MF denotes the correlation mutants killed and faults found, and
tWF denotes the correlation t-wise coverage and faults found.

(b) Results for gzip v1 and v2. GX denotes gzip vX, MF denotes the correlation mutants killed and faults found, and
tWF denotes the correlation t-wise coverage and faults found.

(c) Results for make v1. MX denotes make vX, MF denotes the correlation mutants killed and faults found, and tWF
denotes the correlation t-wise coverage and faults found.

(d) Results for sed v1 and v7. FX denotes sed vX, MF denotes the correlation mutants killed and faults found, and
tWF denotes the correlation t-wise coverage and faults found.

Figure 9.3: Distribution of the Kendall τ rank coefficients on different versions of the subject programs.
Each boxplot represents the distribution of the 30 τ coefficients of correlation between either the mutants
killed and the faults found or between the t-wise (t = 2, ..., 4) coverage and the faults found.
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the faults are very easy to find or very difficult to find, this will have a direct effect on the measured
correlations. In the same lines, we can compare the CIT and the mutation approaches.

Figure 9.4 presents the easiness of finding faults, killing mutants, covering 2-wise and covering 3-wise
interactions per subject. The easiness of finding a fault represents the percentage of test cases that
find this fault. Similarly, the easiness of killing a mutant represents the percentage of test cases that
kill this mutant, and the easiness of covering a t-wise interaction is the percentage of test cases that
cover this interaction. FX, GX, MX, and SX respectively represents the flex, gzip, make and sed
subjects, with the corresponding X version. For each subject, the fault box represents the easiness
for faults, the mutants box represent the easiness of the mutants and the t-wise box the easiness of
the t-wise interactions.

From these results, we can explain why both CIT and mutation have low correlation values for gzip
v2. This is due to the fact that the faults of this version are very easy to detect, contrary to mutants
and interactions. It is the same for make. However, in this case, both mutants and interactions are
easy to detect, resulting in satisfactory correlations.

Conclusively, from the presented results, it becomes evident that killing mutants is more or less as
difficult as covering 2-wise and 3-wise interactions. Indeed, the easiness median values for mutants are
comparable with the easiness medians of 2-wise and 3-wise interactions for sed, greater for gzip and
lower for flex and make. Considering the easiness of mutants and faults, we observe that mutants
tend to behave similarly as faults.

Finally, covering 3-wise interactions is harder than covering the 2-wise ones. This is expected since
covering all 3-wise interactions results in covering all the 2-wise ones. As a result, higher interactions
strengths (t ≥ 4) are more difficult to cover.

9.6 Discussion

The findings of the conducted experiment suggest that the mutation approach can form an alternative
method to CIT. Based on the results, we can infer that mutation is probably more effective in
predicting the actual fault detection of a test suite. In view of this, some additional considerations
regarding the comparison with CIT and the application cost of the approach are needed. This section
discusses these considerations as long as threats to the validity of the conducted experiment.

Figure 9.4: The easiness of finding faults, killing mutants and covering t-wise interactions per subject.
The easiness of finding a fault represents the percentage of test cases that find this fault. Similarly, the
easiness of killing a mutant represents the percentage of test cases that kill this mutant, and the easiness of
covering a t-wise interaction is the percentage of test cases that cover this interaction. FX, GX, MX, and
SX respectively represents the flex, gzip, make and sed subjects, with the corresponding X version. For
each subject, the fault box represents the easiness of the faults, the mutants box represent the easiness of the
mutants and the t-wise box the easiness of the t-wise interactions.
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9.6.1 Additional consideration about mutation and combinatorial testing

By considering the CIT and the mutation approaches, we can observe that they more or less both use
the same information, which is the input model. However, they provide much different results. Why
this difference? In other words, why mutants can be more powerful than the input combinations?

Generally, it is very hard to fully answer this question. A full answer requires extensive and independent
studies. However, we believe that the power of mutation lies on the fact that it considers the input
constraints of the tested systems. Recall that our benchmark programs are real word programs. Thus,
they have input constraints. These constraints play an important role in the testing process of the
system. Not only they define the valid program inputs but they also reflect a logic of the underlying
system. Therefore, they provide some useful information to the testers which is actually missed by
CIT. Mutation takes advantage of this information by mutating these constraints. Mutating the input
constraints forces tests to exercise limit cases that trigger faults. From the testing perspective, input
constraints provide information similar to the one provided by boundary conditions of a system. They
also have a role which is similar to the role of the preconditions of a system. Testing preconditions
and boundary conditions of a system has been identified as an important step of the testing process
[FZ11]. Hence, testing them is necessary for establishing a rigorous testing approach. Here, it should
be noted that CIT uses the input constraints only for computing the valid combinations of program
inputs. Thus, it completely ignores both their importance and the information they provide.

Generally, mutation analysis relies on the power of the utilized mutants. The present studies uses
two Boolean operators mainly chosen based on the authors experience from the feature modeling
of software product lines [HPP+13a, HPP+13b, HPP+14]. Feature models are Boolean models like
the flattened ones used by the present study and hence, the employed operators form a good choice.
In future, we plan to investigate the use of other operators, e.g., [KPAO11] and higher order ones
[JH09, KPAO11]. Nevertheless, the performed analysis shows that the utilized mutants simulate
very well the behavior of the actual faults. Here, it should be mentioned that the use of mutant
selection strategies can increase the difficulty of finding them. However, the main question is whether
doing so results in accurate estimations of the actual fault detection. Particularly, we do not want to
underestimate or overestimate our measures [ABLN06]. This matter falls outside the scope of this
chapter since it is a general research challenge of the whole mutation testing area.

9.6.2 Cost of the approach

One of the main issues of mutation analysis is its computational cost [JH11]. This is due to the need
to introduce and execute a vast number of mutants. However, in our context the computational cost
of mutation analysis is not very important due to the following three reasons. First, we only check
whether a mutant violates the Boolean constraints of the mutated models. This is a simple SAT
verification process which is actually quite fast. Second, the number of mutants is small. Actually
much smaller than the number of interactions, see Table 9.1. For 2-wise, the number of mutants is
5 times lower than the number of interactions. As a result, mutation requires less operations than
CIT. Third, we do not execute the system. Test selection and evaluation based on the input model is
much faster than the actual program execution. Furthermore, in practice, testers will have to verify
the program behavior, i.e., resolving the oracle problem, which is a typical manual activity. Hence,
human time dominates the computational expenses of the approach.

Finally, it should be mentioned that equivalent mutants, i.e., mutants that can not be killed by any
test case do not introduce a big overhead. Actually, the number of such mutants is much less than
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the number of invalid pairs (Table 9.1). Therefore, the computational cost of mutation is lower than
the cost of CIT.

9.6.3 Threats to validity

There are several influencing factors that can threaten the validity of the conducted experiment.
Regarding the generalization of the findings, i.e., external validity, it is possible that the selected
programs are not representative. This may also be the case for the utilized test suites and the faulty
versions. Thus, on larger or other types of programs, mutants and input interactions might not be the
most appropriate choice. Similarly, the examined approaches might not being effective in revealing
other faults. However, the chosen subjects are real world programs widely used in the literature
e.g. [PYCH13, PLT13, YHC13]. Additionally, both the test suites and faults were developed by
researchers independently of the present study. The problem we are facing is the absence of programs
with high quality test cases, well defined input models or specifications, and faulty versions. Clearly,
more studies are in need to answer this concern with confidence.

With respect to the confidence on the reported results, i.e., internal validity, issues on the utilized
input models, the employed test sets and the correctness of the used tools can be identified. It is
possible that errors on the input models and the used tools may have influenced the reported results.
To reduce this threat we performed several manual checks on both the implementation and the
employed input models. Here, it must be noted that the input models were independently developed
by other researchers [PYCH13]. They were also checked by us in order to give confidence about their
correctness. Additionally, as already mentioned, the employed suites are widely used in software
engineering experiments e.g. [PYCH13, PLT13, YHC13].

Finally, some threats regarding the evaluation metrics used, i.e., construct validity, can be identified.
It is likely that the number of faults found by the approaches do not express the real fault detection
ability of the test suites. Additionally, it is possible that the faults number and difficulty can influence
the significance of the performed statistical analysis. To reduce this threat, we employed the Kendall
τ coefficient which is a non-parametric hypothesis test, i.e,. it does not require a very big sample size,
and it measures the similarity of the data order when ranked by the studied effectiveness measures,
i.e., the mutants found or the interactions covered. We also measured the correlations after executing
every test case of various test suite sizes to eliminate the effects of the test suite size.

9.7 Conclusions

In this chapter, we proposed a mutation analysis approach as an alternative technique to CIT. We
conducted a correlation analysis between a) the CIT and b) the mutation approach with their actual
fault detection. Our results suggest that our mutants have a stronger correlation with code-level
faults than the input interactions of the CIT approach. Therefore, mutation forms a valid measure of
the test suites quality.
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10
From software product variants

to a software product line: a
preliminary approach

In the previous parts, we presented methods for generating and evaluating configurations. However, a
software product line is not always available. The goal of this chapter is to present a preliminary but
fully automated approach for reverse-engineering software product lines and their feature model from
the source code of software product variants.

This chapter is based on the work that has been published in the following paper:

• Tewfik Ziadi, Christopher Henard, Mike Papadakis, Mikal Ziane, and Yves Le Traon. Towards a
language-independent approach for reverse-engineering of software product lines. In Proceedings
of the 29th Annual ACM Symposium on Applied Computing, SAC ’14, pages 1064–1071, New
York, NY, USA, 2014. ACM
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10.1 Introduction

SPLE can be implemented as a top-down approach. In that case, features and variability are first
specified at the design stage and then software products are built. The top-down process is useful
when SPLE is adopted from the beginning. However, current practices are different. Indeed, as
reported by Berger et al. [BRN+13], most of the industrial practitioners first implement several
software products and then try to manage them. These SPVs are created using ad-hoc techniques,
e.g., copy-paste-modify. This is a bad practice leading to a complex management and a low SP
quality. Thus, migrating such SPVs to a SPL is the challenge faced by extractive approaches in
SPLE [Kru02].

The need for reverse-engineering the full implementation of a SPL. Over the past decade, several
studies have investigated such approaches. Some of them deal only with the extraction of features
from textual requirements [ASB+08], architectural artifacts [ACC+14, KK12, RPK10], or SPV
descriptions [ACP+12]. We advocate that these techniques can go beyond the feature identification
step. Indeed, they can refactor and migrate SPVs into a SPL. In other words, a full implementation
of a SPL can be reverse-engineered. Therefore, not only features but also their associated assets, e.g,
code units, should be identified and extracted.

Contributions of this chapter. This chapter introduces an automated technique, called ExtractorPL,
capable of performing a reverse-engineering of a SPL. ExtractorPL infers a full implementation of a
SPL given the source code of SPVs. The main challenge of this task is to analyze the source code of
the SPVs in order to:

1. Identify the variability among the SPVs,

2. Associate them with features,

3. Regroup the features into a variability model,

4. Map the code units to each feature.

The proposed approach is language-independent and only uses as input the source code of the SPVs.
In addition, ExtractorPL is implemented as a publicly available prototype tool and a case study
performed on existing SPLs assesses the feasibility and the practicality of the introduced technique.

The remainder of this chapter is organized as follows. Section 10.2 and 10.3 respectively present
the ExtractorPL approach and a case study to evaluate it. Section 10.4 discusses the benefits and
the limitations of the approach. Finally, Section 10.5 concludes the chapter and present our future
work.

10.2 The ExtractorPL approach

ExtractorPL is a language-independent approach which extracts a SPL from the source code of SPVs.
The reverse-engineered SPL is a full implementation since it allows (a) building specific products by
composing the source code units of the identified features and (b) managing the resulting SPL and
its products through a FM.

To achieve this re-engineering, three main steps are considered. These steps are depicted by Figure
10.1. First, ExtractorPL abstracts each SPV into a set of atomic pieces called set of construction
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primitives (SoCPs). Each construction primitive (CP) represents a node in an abstract syntax tree
for features called feature structure tree (FST). Then, following the lines suggested in [ZFdSZ12],
features are identified as SoCPs and translated to FSTs. Finally, the code units are generated from
the obtained features’ FSTs.

The following subsections introduce an example of SPVs from a banking system that can be migrated
into a SPL. Then, the three main steps of the ExtractorPL approach are detailed through the
example.

10.2.1 The banking system example

As a concrete example of SPVs, consider a set of banking systems [ZFdSZ12]. Each variant proposes a
simple banking application. The variability between these SPVs is related to the limit on the account
and to the currency exchange, which are optional features. These banking products were manually
developed using a copy-paste-modify approach.

Figure 10.2 illustrates the source code of the Account class in the three variants which are denoted as
Product1Bank, Product2Bank, and Product3Bank. Following this figure, consider the Product1Bank
product depicted by Figure 10.2a. In this SP, the Account class defines a basic banking account
without the limit and currency information. On the contrary, since the Product2Bank of Figure
10.2b supports an account limit feature, its corresponding Account class defines the limit field. In
addition, the withdraw method is refined to check the limit. Finally, in the Product3Bank variant of
Figure 10.2c, the Account class is defined with information related to both the limit and currency
exchange.

10.2.2 Abstraction of the software product variants

ExtractorPL takes as input the source code of a set of SPVs. To analyze and compare these variants,
each SP is first abstracted into a SoCPs. To this end, ExtractorPL builds the SoCPs associated to
each SP by using the general model proposed within FeatureHouse, called Feature Structure Tree

Software product 
variants source code

Features to

FSTs
Parser

assets

C++, Java, ...

SoCPs
Features as

FSTs

Pretty

Printer

FSTs to

SoCPs

FSTs

Feature
Identification

Features as
SoCPs

Full SPL
implementation

(1)
Abstraction of the

Software product variants

(2)
Automatic identification 

of the SPL features

(3)
Feature code
generation

Feature model

Figure 10.1: The ExtractorPL approach for the reverse-engineering of software product lines. First, the
software product variants are abstracted. Then, their features are automatically identified. Finally, the code
units corresponding to the features are generated and a feature model is extracted.
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(FST) [AKL09]. a FST represents the essential software artifacts as a tree. Each node of a FST has
a name and a type.

The choice of FSTs is based on the following two criteria. First, a FST is a language-independent
model. Second, FSTs include general composition operators. From the FSTs associated to each SPV,
ExtractorPL represents them as a SoCPs. The construction primitives (CPs) used to decompose
each FST depend on the type of nodes within each FST. In this work, the following construction
primitives are used:

SoCPs = {CreateNonTerminal(name, type, child), CreateTerminal(name, type, parent,
body)}.

We distinguish two types of nodes within a FST: non-terminal and terminal ones. A non-terminal
node denotes inner modules, e.g., packages and classes. Terminal nodes store the module’s content,
e.g., method bodies [AKL09].

Each product variant is thus abstracted as a set of FSTs. For each node in each obtained FST, a CP
is created and added to the SoCPs. This means that each SP is defined as a set Pi = {cp1, cp2, .., cpn},
where each cpi ∈ SoCPs. In the following, we consider AllP = {P1, P2, .., PN} as the set of SPVs
available to perform the reverse-engineering of the SPL, i.e., the input of the ExtractorPL approach.

The left part of Figure 10.3 depicts the three FSTs obtained from the source code of the banking
SPVs. For instance, the Account class is represented by a node with the name Account and the type
Class.

The following subsection introduces the algorithm that compares and analyzes the extracted SoCPs.
Equivalence between the construction primitives relies on the equivalence between nodes in the
corresponding FST [AKL09], as defined below.

(a) The Product1Bank variant

(b) The Product2Bank variant (c) The Product3Bank variant

Figure 10.2: Example of three software product variants of a banking system. Each variant has a specific
implementation of the Account class.
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1. A non-terminal node n1 is equivalent to a non-terminal node n2 if and only if n1 and n2 have
the same name, the same type and the same node child.

2. A terminal node n1 is equivalent to a terminal child n2 if and only if they have the same name,
the same type, the same parent and the same body.

10.2.3 Automatic identification of the software product line features

The second step of the reverse-engineering process performed by our approach aims at comparing
the SoCPs of the SPVs in order to identify their features. To this end, ExtractorPL first uses the
algorithm proposed in [ZFdSZ12] to represent features as sets of SoCPs. Then, these features are
transformed into FSTs.

The feature identification process is based on a formal definition of a feature that uses the notion of
interdependent CPs. This notion is defined as follows.

Definition 8 (Interdependent construction primitives) Given the set of SPVs that can be used
by ExtractorPL, AllP , two CPs (of SPs of AllP ) cp1 and cp2 are interdependent if and only they
belong to exactly the same SPVs of AllP . In other words, cp1 and cp2 are interdependent if the two
following conditions are fulfilled.

1. ∃P ∈AllP cp1∈P ∧ cp2 ∈ P .

P
1
Bank= {

    CreateNonTerminal(bs, package, (Account)),
    CreateNonTerminal(Account, Class, bs, 

(id, balance, deposit, withdraw)),
    CreateTerminal(id, field, Account),
    CreateTerminal(balance, field, Account),
    CreateTerminal(deposit, method, Account),
    CreateTerminal(withdraw, method, Account),
}

bs

Account

id balance deposit withdraw

(a) FST and SoCPs corresponding to the Product1Bank variant

P
2
Bank= {

    CreateNonTerminal(bs, package, (Account)),
    CreateNonTerminal(Account, Class, bs, 

(id, balance, deposit, withdraw)),
    CreateTerminal(id, field, Account),
    CreateTerminal(balance, field, Account),
    CreateTerminal(limit, field, Account),
    CreateTerminal(deposit, method, Account),
    CreateTerminal(withdraw, method, Account),
    CreateTerminal(getLimit, method, Account),
}

bs

Account

id balance deposit withdrawlimit

(b) FST and SoCPs corresponding to the Product2Bank variant

P
3
Bank= {

    CreateNonTerminal(bs, package, (Account)),
    CreateNonTerminal(Account, Class, bs, 

(id, balance, deposit, withdraw)),
    CreateTerminal(id, field, Account),
    CreateTerminal(balance,field, Account),
    CreateTerminal(limit ,field, Account),
    CreateTerminal(currency, field, Account),
    CreateTerminal(deposit, method, Account),
    CreateTerminal(withdraw, method, Account),
    CreateTerminal(getLimit, method, Account),
}

bs

Account

id balance deposit withdrawlimit currency

(c) FST and SoCPs corresponding to the Product3Bank variant

Figure 10.3: Feature structure trees and construction primitives for the banking example. The left part
represents the feature structure trees abstracting the Account class of the banking products variants. The
corresponding set of construction primitives is represented on the right.
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2. ∀P ∈AllP cp1∈P ⇔ cp2∈P .

Since interdependence is an equivalence relation on the set of CPs of AllP , it leads us to the following
definition of a feature.

Definition 9 (Feature) Given AllP a set of SPVs, a feature of AllP is an equivalence class of the
interdependence relation of the CPs of AllP .

The application of this algorithm to the SoCPs of the banking SPVs provides the features depicted by
Figure 10.4. This includes one mandatory feature and three optional ones. The Base feature gathers
all the CPs that are present in all the SPVs. The feature F1 concerns the limit information. Indeed,
it contains primitives to create the limit field, its getter and the withdraw method with the body
defining limit checking. F2 is related to the currency exchange since it contains the CPs related to
the currency field. The F3 feature is related to the withdraw method without limit checking. Finally,
ExtractorPL also organizes the obtained features into a FM. This model is depicted by Figure 10.5.

The algorithm for identifying the features of a given set of products [ZFdSZ12] is based on this
definition. In brief, it takes as input a set of SoCPs, i.e., one per input SPV and returns a single
mandatory feature called Base and a set of optional features for these SPVs. Finally, once the features
of the SPVs have been identified, they are represented as FSTs in order to be useful for generating
the code of each feature.

Figure 10.4: The identified features for the banking software product variants. Base gathers the code
common to any banking system. F1 concerns the limit information. F2 represents the currency exchange and
F3 denotes the withdraw method without the account limit checking.

Mandatory

Optional

SPL

Base F2F1 F3

Figure 10.5: The feature model built by ExtractorPL for the banking example.
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10.2.4 Feature code generation

In addition to the feature identification, ExtractorPL aims at extracting a full compositional imple-
mentation of a SPL from the source code of SPVs. It means that our approach includes the generation
of the code units associated to each feature once the SPL is extracted. As a result, one is able to build
tailored software products by automatically generating the source code of the features selected.

To perform the code generation, ExtractorPL uses the FSTs of the features obtained in the previous
step. Then, it generates their code units by using the pretty printers proposed by FeatureHouse.
Indeed, the FeatureHouse framework includes a set of pretty printers for different programming
languages such as C or Java. These printers produce the code from FSTs. Using this framework
within our approach allows ExtractorPL being a language-independent technique.

Finally, to demonstrate the result of the code generation, Figure 10.6 depicts the code units generated
from the FSTs of the features. Following this figure, the code associated with the Base feature
represents the common implementation of the Account class. The code units of the remaining optional
features express the variability and refine the common code by adding elements related to each
feature. Given the code of each feature, a product variant of the resulting SPL can be built using
the compositional operators between FSTs. The following section evaluates ExtractorPL via a case
study.

10.3 Case study

In this section, ExtractorPL is assessed. The question raised here is how this evaluation can be
performed. Generally, an automated reverse-engineering task can be considered as successful when it
provides similar results to a manually performed one. Therefore, one way to measure the accuracy of
our approach is to compare its result with the result from a developer. Another way is to measure

(a) The code generated for the Base feature (b) The code generated for the F1 feature

(c) The code generated for the F2 feature (d) The code generated for the F3 feature

Figure 10.6: The code units generated for each of the extracted features of the banking example.
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Table 10.1: The notepad software product line used to evaluate ExtractorPL towards research question 1.
Lines of code 806

Classes 14

Optional features
Copy/Cut/Paste (CCP)
Undo/Redo (UR)
Find (F)

Product variants

Basic Notepad (BN)
BN + CCP
BN + UR
BN + F
BN + CCP + UR
BN + CCP + F
BN + UR + F
BN + CCP + UR + F

whether the extracted SPLs provide a minimum quality standard as defined by the two following
requirements.

1. The extracted SPL allows building the SPVs that have been used to perform the re-engineering.

2. The approach identifies the features that must appear in all the possible variants of the SPL.
These features are usually called mandatory features.

If a reverse-engineered SPL cannot fulfill the first condition, it is obviously an erroneous approach.
Similarly, if the second condition cannot be satisfied, then there is no hope to identify optional
features. Following the above-mentioned concerns, a controlled experiment is conducted based on
existing SPLs. We use SPVs from existing SPLs in order to establish a comparison basis between
the existing SPLs and the extracted ones. As a result, this case study aims at answering the two
following RQs:

• [RQ1] How close the SPL reverse-engineered by ExtractorPL is to the original one?

• [RQ2] Does the reverse-engineered SPL has a minimum quality standard?

The first RQ amounts to evaluate whether the SPL extracted with ExtractorPL conforms to the
original one. To this end, we manually compare the original SPL with the extracted one. In particular,
we check whether extracted features correspond to those defined in the original version of the SPL.
The second RQ aims at checking whether the above-mentioned minimum requirements are fulfilled
by the SPL extracted by our approach.

The evaluation of ExtractorPL is divided into two parts. The first one is performed manually and
aims at answering to the RQ1. The second one performs automatically in order to answer to the
RQ2.

10.3.1 Accuracy of the extracted software product line (research question 1)

In this section, we compare the SPL resulting from ExtractorPL with the original one. This is a
manual step and thus it requires a lot of effort to be accomplished. Therefore, in order to complete
the experiments with reasonable resources, the evaluation is limited to one benchmark.
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10.3.1.1 Setup

We use a notepad SPL written in Java [TKB+14]. This SPL is detailed in Table 10.1. It contains
14 Java classes for a total of 806 lines of code. It proposes three optional features: copy/cut/paste,
undo/redo and find. By combining these three features, up to 8 different notepad applications can be
built. These 8 SPVs are used by ExtractorPL to reverse-engineer a SPL. We manually compare the
features extracted by ExtractorPL using the 8 SPVs with the features of the notepad SPL.

10.3.1.2 Evaluation

ExtractorPL has extracted 4 features. The first one, Base, contains the 7 classes related to the
core of any notepad variant: About, Actions, Center, ExampleFileFilter, Fonts, Notepad and
Print. The three other features, F1, F2, and F3 are related to the optional features of the original
SPL. Indeed, F1 contains the Notepad and Actions classes. This latter defines the copy, cut and
paste methods. As a result, F1 is related to the copy/cut/paste feature. The second feature, F2,
encompasses the Notepad and Actions with the find method and attributes. Finally, F3 contains
the Notepad, Redo and Undo actions. Finally, we manually checked that the extracted SPL allows
generating the code of all the SPVs used as input and that they can be executed without encountering
any problem.

10.3.1.3 Answering research question 1

The extracted SPL conforms with the original one. We compared the obtained features and variants
and found that our approach is able to accurately retrieve the features and to re-generate the SPVs
used as input. As a result, given a set of SPVs ExtractorPL is able (a) to retrieve the variability
among these SPVs and (b) to extract a SPL that is representative of the original one.

10.3.2 Quality of the extracted software product line (research question 2)

The second part of this study aims at evaluating whether the reverse-engineered SPL achieves a
minimum level of quality.

10.3.2.1 Setup

We use the two following SPLs from FeatureIDE [TKB+14]:

1. E-Mail. This SPL gathers a family of systems managing mails. Examples of optional features
in this SPL include encryption or the address book.

2. GPL. The Graph SPL is a family of graph manipulation algorithms [LHB01].
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Table 10.2: The software product lines used for the evaluation of the approach towards research question 2.
Language Features SPVs Classes/Files Lines of code SPVs used by ExtractorPL

E-Mail C 23 5,632 39 816 1, 5, 10, 50 and 100
GPL Java 38 840 55 1929 1, 5, 10, 50 and 100

We choose these particular SPLs as they are considered to be standard benchmarks. Table 10.2
gathers detail regarding these two SPLs. In particular, for each SPL, it presents the programming
language in which it is implemented, the number of features of the corresponding FM, the number of
possible SPVs that can be built according to the FM and the number of input SPVs that have been
used by ExtractorPL to extract the SPL. Indeed, we used a sample of SPVs to extract the SPL since
hundreds of SPVs can be build from these SPLs.

The configuration of the SPVs used as input by our approach are configurations randomly selected
from the space of all the possible configurations that can be generated from the FM, as used in the
previous parts of this dissertation. For each configuration randomly generated, we use FeatureHouse to
construct the corresponding SPV. The resulting SPVs are then used by ExtractorPL to reverse-engineer
the SPL.

For each SPL and for each number of SPVs used by our approach, the extraction of the SPL has
been independently performed 10 times. In the following, we present two approaches to automatically
evaluate the resulting SPL. The first one compares the SPVs generated by ExtractorPL with the
ones used to extract the SPL. We expect the resulting SPL to be able to build the SPVs that were
used as input. The second steps automatically evaluates the mandatory features. Here, we expect
the mandatory features of the original SPL to be included in the mandatory features of the extracted
SPL.

10.3.2.2 Regeneration of the input software product variants

The objective is to check whether the extracted SPL allows building the SPVs that were used by
ExtractorPL. To this end, we check whether the SoCPs of a given input SPV (of the original SPL)
matches the SoCPs of the corresponding SPV built from the reverse-engineered SPL. More formally,
if AllPin denotes the set of N input SPVs used as input and if AllPout denotes the set of N SPVs
generated from the extracted SPL, we check that:

(∀P ∈ AllPin)(∃P ′ ∈ AllPout) |P = P ′,

where P and P ′ are SPVs represented as a SoCPs. The equivalence between two SPVs P and P ′ is
defined as an equivalence between their SoCPs. For each of the two SPL of Table 10.2 and for each
number of input SPVs, all the 10 runs of the approach produced a SPL which allows regenerating the
input SPVs, thus validating the above-mentioned condition.

10.3.2.3 Evaluation of the mandatory features

ExtractorPL extracts one mandatory feature called Base and a set of optional features. In this section,
we evaluate whether the mandatory features of the original SPL are included in the mandatory feature
of the SPL extracted with ExtractorPL. To this end, we check whether the SoCPs of the original
mandatory features are included in SoCPs of the mandatory feature of our extracted SPL. More
formally, if SoCPsin denotes the SoCPs of the input mandatory features and if SoCPsout denotes
the SoCPs of the extracted mandatory feature, we check that:
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SoCPsin ⊆ SoCPsout.

The evaluation has been performed 10 times independently per SPL. For each SPL and for each
number of random SPVs used as an input by the approach, we observed that the original mandatory
features are included in the mandatory feature of the extracted SPL. It is noted that all the mandatory
features are always validated on both the E-Mail (C) and GPL (Java) SPLs, fact which demonstrates
the ability of ExtractorPL to retrieve the mandatory features.

10.3.2.4 Answering research question 2

From the results presented in the previous sections, we found that (a) the extracted SPL allows
building the SPVs used to extract this SPL, and (b) all the mandatory features of the original SPL
are included in our extracted SPL. It means that our approach does not miss any information, thus
fulfilling the minimum quality requirements defined in the beginning of this section.

10.3.3 Threats to validity

The conducted study involves three existing SPLs. As a consequence, there is a threat regarding the
generalization of the results. Indeed, using different SPLs might lead to different results. To both
reduce this threat and to provide a good sample of applications, we used three SPLs considered as
standard benchmarks. These three SPLs are of different size and programming languages. Other
threats can be identified due to the employed evaluation metrics. In other words, there is a risk that
the quality measures are irrelevant towards the “real” quality of a SPL. To reduce this threat, we
evaluate the approach using manual and automatic metrics. Additional threats can be due to our
implementation. Indeed, potential errors in it might affect the presented results. To overcome this
issues, we divided our implementation into modules to minimize the potential errors. We also make
the prototype tool publicly available. Finally, there is a threat regarding results that could happen
by chance. To minimize the risks attributed to random effects, we repeated the experiments 10 times
independently.

10.4 Discussion

This section first discusses the reasons to migrate existing SPVs to a SPL. In this respect, several
profits are provided by our tool. Then, some limitations regarding the proposed approach are
highlighted.

10.4.1 Benefits

Migrating a set of existing SPVs to a SPL can lead to the following profits. First, in can reduce
the developments costs. Indeed, a SPL allows building tailored software products by combining
the features. It thus allows reusing existing code within different SPs. This can be performed
automatically and without adapting the code.
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Second, it can bestow a faster time to market. A full implementation of a SPL as proposed by our
approach easily allows building the SPVs by only selecting the desired features. The SPVs are then
generated by composing the code of the selected features. This allows configuring easily the SPVs
depending on the targeted market. It also greatly decreases the time to build these SPVs and enables
a flexible productivity.

Another outcome is the higher quality in the SPs. Migrating existing SPVs to a SPL leads to a
reduced risk to introduce errors when new SPs are created. Indeed, creating SPVs with ad-hoc
techniques like copy-paste-modify can lead to an introduction of errors in some variants. If the code
of each feature is centralized within the SPL and shared in all the SP proposing these features, it
allows testing each feature independently. This allows using SPL testing techniques which aim at
testing the whole SPL in an efficient way [HPP+13d, HPP+13c].

Finally, moving SPVs to a SPL provides a higher quality in the SPs developed, thus leading to an
easier management and maintenance of the SPs. In particular, the variability model such as the FM
allows managing and tailoring the SPs. Besides, the code contains less redundancy and is refactored
according to the underlying model.

Regarding ExtractorPL, it is the first approach to the authors’ knowledge which allows building a
SPL from a set of SPVs. Indeed, existing approaches require additional information to perform the
reverse-engineering, like annotations in the code. On the contrary, our approach is fully automated
and requires only the source code of the SPVs. In addition to the extraction of the code units of the
features, our approach also extracts a FM. Such a model provides a high-level view of the variability
within the SPL. It also allows visualizing the features, their dependencies and paves the way to
reasoning and model-based testing of the SPL [HPP+14].

10.4.2 Limitations

ExtractorPL does not consider variability within the body of methods or functions, i.e. the statement
level. We are working on the extension of the approach to remove this limitation. The idea is to
modify the FSTs grammar to allow defining nodes for the statements of functions. Besides, the
current implementation of ExtractorPL only infers a FM with a single mandatory feature and a set of
optional features. This model does not encompasses constraints among the features, e.g. implications
or exclusions. We are working on an extension of the proposed approach to infer a possible list of
constraints from the features that are observed in the SPVs. These constraints will then be proposed
to the user to be accepted and added to the FM.

10.5 Conclusions

Automatically migrate a set of SPVs to a SPL is not an easy task. It requires to perform several
non-trivial steps including (a) the identification of the features in the source code of the SPVs, (b)
the extraction of the features as code units, (c) the extraction of a variability model and (d) once
the SPL is extracted, the correct composition of these features in order to build tailored SPVs. We
tackled this problem with ExtractorPL, a language-independent approach which provides a quick
automatic front-end to refactor a set of similar SPVs into a SPL. ExtractorPL has been implemented
in a prototype tool based on which several experiments have been conducted. Our technique bestows
two main outcomes.
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• It is a full extractive approach. From the source code of a set of SPVs, ExtractorPL
extracts a full implementation of a SPL. This includes the features, their code units, and a
variability model.

• It is a language-independent approach. ExtractorPL only manipulates FSTs to extract a
SPL. To integrate new languages or artifacts, it only requires to implement a parser for FSTs
related to this language.

Finally, to enable reproducibility of our results, our implementation of ExtractorPL is publicly
available at http://pagesperso-systeme.lip6.fr/Tewfik.Ziadi/sac14/.
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11
Fixing re-engineered software

product line feature models
In the previous chapter, we presented an approach to perform the reverse-engineering of a software
product lined and its feature model from the source code of software product variants. Since such
approaches are generally error-prone, it is required to automatically fix non accurate feature models.
In this context, this chapter introduces an approach to automatically test and fix re-engineered feature
models so that they match the systems they model.

This chapter is based on the work that has been published in the following paper:

• Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le Traon.
Towards automated testing and fixing of re-engineered feature models. In Software Engineering
(ICSE), 2013 35th International Conference on, pages 1245–1248. IEEE, 2013
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Chapter 11. Fixing re-engineered software product line feature models

11.1 Introduction

To bring the benefits of feature modeling to HCS, several re-engineering techniques [SLB+11,
LHGB+12], producing FMs from various systems artifacts, have been proposed.

The need for improving re-engineered feature models. These techniques are partly automated
and often require human intervention. Such re-engineered FMs may thus not be accurate, yielding
incorrect analyses decisions about highly configurable systems, in turn hampering their correct
re-engineering. As an example of such inaccurate re-engineering, our experiments show that none of
the 1,000 configurations generated from the Linux kernel FM [SLB+11] is consistent with respect to
actual kernel configuration rules. This context motivates our two research questions:

• [RQ1] How to detect inconsistencies between the re-engineered FM and its source highly config-
urable systems?

Inconsistencies fall into two categories. On the one hand, system configurations derived from the FM
are incorrect with respect to the system. On the other hand, existing valid configurations do not
satisfy the FM formula. In this chapter, we refer as testing the process of finding these flaws. When
detected, dealing with these discrepancies may require an automated correction of the FM.

• [RQ2] How to automatically make a FM consistent with its real system?

Digging manually through thousands of features and dealing with hundred thousands of possibly
faulty constraints in a FM is not an option. Thus, one must devise automated ways to correct
inconsistencies in the FM so that it reflects its system. The process of correcting a FM is referred
to as fixing. Current re-engineering approaches either do not validate the re-engineered FMs or
use simulation of the configuration process [SLB+11]. This practice, as our experiment shows, is
insufficient to detect all the problems of the FM.

Contributions of this chapter. In this chapter, we propose an automated approach to both test
and fix re-engineered FMs. It relies on a continuous loop where FMs are iteratively tested and fixed.
This loop forms a search process that gradually improves (fixes) the FMs. The search is guided by
the number of inconsistencies found during a continuous testing process. Early results on the Linux
kernel FM shows that more than 50% of the problems encountered in the re-engineered FM can be
eliminated.

In brief, this chapter provides the following insights:

• We introduce a search-based approach to automatically test and fix re-engineered FMs.

• We perform a preliminary evaluation to demonstrate the benefit of our approach.

The remainder of this chapter is organized as follows: Section 11.2 presents the test-and-fix loop.
Section 11.3 reports on the empirical evaluation. Finally, Section 11.4 concludes the chapter.

11.2 Test-and-fix loop

Our approach involves two entities: the system and the re-engineered FM. To find and correct the
problems of the FM, such as erroneous constraints, this approach requires two steps. The first one
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aims at testing the FM to highlight the problems. The second step uses feedback information from
the testing process to fix the FM. The repetition of these two steps form a test-and-fix loop illustrated
by Figure 11.1.

11.2.1 Testing the feature model

Testing a FM consists of two parts: 1) the evaluation of the FM consistency using valid configurations
of the systemi and 2) the evaluation of configurations generated from the FM with respect to the
system. This process is depicted by the upper box of Figure 11.1.

Evaluating the consistency of the feature model with respect to valid configurations of the
system. This evaluation goes from the system to the FM. To this end, we assume the existence
(or the possibility to obtain by some means) of working and actual configurations of the system.
The FM is evaluated over these configurations to find existing constraints in the FM which are not
compatible with the existing configurations. This first step gives feedback information on existing
wrong constraints (EWC) in the FM. These EWC of the FM, as long as the existing system
configurations that fail (SCF ) to be validated through the FM, are returned.

Evaluating configurations generated from the feature model with respect to the system. This
evaluation goes from the FM to the system. Valid configurations of the FMii are randomly generated
using a SAT solver [HPP+12]. These configurations are then evaluated on the system side. To this
end, the tester decides whether the configurations are valid with respect to the system and provides
feedback when configurations fail. We will consider that generally, the tester defines an oracle which
uses abstract rules to decide upon the validity of configurations. The oracle depends on the system:
for instance, it can use execution information or compilation result, and represents the task usually
done by the tester. The oracle rules that fail (ORF ) as long as the generated configurations that fail
(GCF ) according to the oracle are returned.

iA valid configuration refers to a working configuration of the system.
iiHere, a valid configuration is a configuration that satisfies the FM formula.

System

2) Evaluate generated configurations

1) Evaluate existing configurations

ORF, GCF EWC, SCF

Replace FM by FM'
if better feedback at the
next evaluation

Alter / remove / insert constraint

FM 
config.

System 
config.

Testing the FM

Fixing the FM

Feedback

FM'

FM

Figure 11.1: Test-and-fix loop for feature models. ORF are oracles rules that are violated on the system
side, GCF are the configurations generated from the feature model (FM) that fail to be validated on the
system side, EWC are existing wrong constraints in the FM and SCF are system configurations that do not
satisfy the FM.

143



Chapter 11. Fixing re-engineered software product line feature models

11.2.2 Fixing the feature model

This second step aims at fixing the FM based on the feedback information collecting during the
testing part. This step is represented by the lower box of Figure 11.1.

To fix the FM, three operations are considered:

• Altering an existing constraint of the FM. Using the EWC, a constraint of the FM is selected
based on a fitness proportionate selection and a randomly selected literal of the selected
constraint is negated,

• Removing an existing constraint of the FM. Using the EWC, a constraint selected based on a
fitness proportionate selection is removed,

• Inserting a constraint in the FM. Using the ORF , a constraint is added to the FM.

Performing one of this operation depends on a probability. After having performed one of this
operation, an updated FM, FM’, is produced. This resulting FM, FM’, can be seen as a mutant of
the original FM.

11.2.3 Continuous improvement

Basically, the global approach consists in the repetition of the testing and fixing steps. To this end,
the problem is formulated as a search-based one and a hill climbing technique [RN03] is used. The
approach works as follows. From a given FM, the testing step provides feedback information and
the fixing part produces a modified FM FM’. Then, to decide which FM to keep, i.e. the original
or the fixed one, the fitness of the original FM and the fitness of the fixed FM’ are compared. This
comparison is performed using the four feedback information of the testing step:

• s1: the number of EWC or #EWC,

• s2: the number of SCF , or #SCF ,

• s3: the number of ORF , or #ORF ,

• s4: the number of GCF , or #GCF .

Let us consider as s1, ..., s4 the feedback information of an FM and as s′1, ..., s′4 the feedback information
of the fixed FM FM’. The updated FM FM’ will replace the original FM if and only if a better fitness
is observed for FM’. A better fitness for FM’ occurs if the following condition is satisfied:

[(
∑4

i=1 s
′
i <

∑4
i=1 si)∧(s′1 ≤ s1∧s′2 ≤ s2∧s′3 ≤ s3∧s′4 ≤ s4)]∨(s′2 < s2∧s′4 ≤ s4)∨(s′2 ≤ s2∧s′4 < s4).

This condition allows ensuring that a decrease in one of the four feedback information does not
engender any negative impact on the others and keeping the focus on reducing the configurations
that fail. Finally, after having replaced or not FM by FM’, the process is repeated from step (1). It
should be noted that the loop is general and independent of both the way FMs are represented and
the use of SAT solvers.
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11.3 Preliminary evaluation

To evaluate the proposed approach, we consider the Linux kernel 2.6.28.6 FMiii [SLB+11].

11.3.1 The Linux kernel feature model

The Linux kernel is an operating system written in C with about 6,000 features. The re-engineered
FM of the Linux kernel contains about 200,000 constraints. In the context of this study, an oracle
is needed on the system side to decide whether a given configuration derived from the FM is valid
or not. In the context of this study, we use the make tool as the oracle. Alternatively, the user
could decide himself (play the role of the oracle) about the validity of the configurations. Make is a
tool that assist the compilation process of system sources. To this end, make check rules which are
specified by dependencies between the features in Kconfig files. These files are placed in the source
code directories of the system. We parsed these files to extract these dependencies and to transform
them into CNF constraints. It represents around 8,000 constraints. Thus, for a given configuration
generated from the FM, it is checked whether this configuration satisfy or not the oracle rules. If yes,
the configuration is considered as a valid configuration of the system. Otherwise, it is considered as
invalid. It is noted that the use of make as an oracle to test is specific to this study. The test-and-fix
loop is applicable for any kind of oracle.

11.3.2 Evaluation of the re-engineered Linux kernel feature model

The re-engineered FM contains several problems that have been found while performing the testing
process. Recall that the testing process allows evaluating the FM through the EWC, SCF , GCF
and ORF feedback information.

First, problems occur when evaluating the re-engineered FM formula with respect to valid configura-
tions of the system. An alternative option provided by make is the generation of valid configurations
of the system. The re-engineered FM has been evaluated over 1,000 working system configurations
produced by make. By evaluating the FM through these working configurations of the system, we
found that 50 constraints in the FM were not satisfied and none of these 1,000 configurations were
able to satisfy the FM. In addition, major issues were highlighted such as mandatory features in the
FM which never appear in any valid configuration of the system.

Second, configurations generated from the FM do not satisfy the constraints checked by the make tool
(the oracle rules). We found that for, any 1,000 configurations generated from the FM, more than
28% of these constraints were not satisfied and that all these 1,000 configurations generated from the
FM were invalid for the system. These problems are summarized in the column “Re-engineered FM”
of Table 11.1. The existence of these problems motivate the proposed approach.

iiihttp://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas
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Table 11.1: Evolution of the feature model problems over the repetitions (testing feedback). EWC are
existing wrong constraints in the feature model (FM), SCF are system configurations that do not satisfy the
FM, ORF are oracles rules that are violated on the system side and GCF are the configurations generated
from the FM that fail to be validated on the system side.

Re-engineered FM Fixed FM
2,000 runs 3,000 runs 4,000 runs 5,000 runs

#EWC 50 46 43 41 39
#SCF 1,000 885 556 498 455
#ORF 2,468 1,646 1,395 1,236 1,084
#GCF 1,000 1,000 1,000 1,000 1,000

11.3.3 Improving the feature model

We executed our approach on the re-engineered FM. For all the testing and fixing steps, we used 3
valid configurations of the system. We could have use more valid configurations, but in a realistic
situation, only a small number of working configurations should exist. These configurations were
randomly generated using make and used for all the repetitions of the test-and-fix approach. For
the generated configurations, 6 were generated at each repetition of the approach. The probabilities
to execute one of the three operations were assigned as follows: 0.5 for the alteration, 0.4 for the
insertion and 0.1 for the removal.

Using the testing process, we evaluated the fixed FM at different level of repetitions, as shown in
Table 11.1. The feedback information were obtained using the same 1,000 valid system configurations
as those used for the evaluation of the re-engineered FM and using 1,000 configurations generated
from the FM.

11.3.3.1 Answering research question 1

The evaluation of the EWC, SCF , GCF and ORF of the re-engineered FM emphasizes the in-
consistencies between this FM and the system. We believe that these simple metrics characterize
inconsistencies that may exist between highly configurable systems, FMs representing their variability
and oracles checking the legality of highly configurable systems configurations. Yet, more detailed
inconsistency types may be needed to improve user feedback and drive the fixing process.

11.3.3.2 Answering research question 2

The proposed approach uses both existing valid configurations of the system and configurations
generated from the FM. By using only 3 valid configurations of the system, the proposed approach
allows reducing wrong constraints in the FM while making the FM satisfiable towards existing
configurations of the system. After 5,000 repetitions of the process, the proposed approach dropped
system configurations that fail from 1,000 to 455, and divided by more than the half the violated
rules of the system.
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11.4 Conclusions

Fixing a re-engineered FM to make it in consistent with its corresponding system is not an easy task.
It requires a lot of efforts to first check existing constraints and then correct them. In practice, it
represents a manual work difficult to realize. In this chapter, a test-and-fix loop to automatically
improve re-engineered FMs was presented. This loop is implemented using a search-based technique,
since the exploration space makes impossible the application of other unscalable approaches. The
proposed approach tries to make the FM conform to the real system. The novelty of this approach is
that it achieves to effectively automate the identification and correction of FMs inconsistencies. It is
the first approach, to the authors knowledge, that actually employs and checks actual configurations
on a real system while most re-engineering techniques do not face the generation of real system
configurations. The preliminary study conducted on the Linux kernel FM provides promising results
as it allows reducing the problems observed in the FM, thus improving the alignment of the model
regarding the actual system.
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12
Testing card authorization

systems with CETREL: a
real-world case study

This chapter presents an industrial application of the techniques presented in the previous parts.
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12.1 Context

CETREL is a Luxembourgish company created in 1985 offering and managing a variety of products
and services associated to credit cards and electronic payments. The company also operates as
a technical intermediate between cardholders and banks for processing and managing credit card
transactions, handling thousands of credit card authorizations per day. An authorization is a
network message which allows or deny a credit card transaction. For instance, a credit card payment
to a merchant or a withdrawal at an automated teller machine will trigger a credit card authorization
for validating or not the payment. An authorization encompasses different parameters such as the
amount of the transaction or the merchant identifier. These parameters along with the banking
situation of the cardholder are used to authorize or deny the transaction.

12.1.1 Migrating to a new card authorization systems

The CETREL company is currently undertaking a migration of their card authorization system
from a legacy application to a new one developed by an external consulting company. To test their
new system, they are replaying daily traffic of authorizations on both systems and compare the two
outputs. They expect the new card authorization system to behave similarly as the legacy one, the
authorizations being the test cases. Figure 12.1 depicts the testing approach performed by CETREL.
Despite the benefits provided by the deployment of the new system, the migration is introducing
several issues.

12.1.2 A difficult migration

The current status in the real time environment is critical due to the difficulty to perform the
migration: about 1 incident per month in the production card authorization system occurs. More
specifically, each new setup of the system implemented into production causes problems due to
potential defects it contains. Fixing those defects is essential since they can lead to the unavailability
of the authorization system processing the authorizations. The consequences are multiple and severe,
among which are the following: non-operated transactions resulting in money losses for banks and

Daily traffic
of

authorizations

Daily traffic of
authorizations

Legacy
system

New
system

New
system

Defects found

Figure 12.1: Process for testing the new card authorization systems in CETREL. Authorizations are played
on both the legacy system and the new one. Different outputs or behavior indicate that the new system
contains a defect.

152



12.2. Approach

merchants, damage in CETREL’s reputation, and dissatisfied customers. Hence, fixing those defects
is crucial.

12.1.3 Improving the testing process

Finding the defects due to the migration is essential, and require to improve the testing process.
Replaying daily traffic of credit card authorizations to find potential defects in the new system is a
costly process. For each authorization, it requires to set the banking context corresponding to the
moment that authorization was issued in a test environment and to replay it. Since a daily traffic
can contains dozen of thousands of authorizations, running all of them is a time consuming task.

Despite the time required for replaying daily traffics, some typical subsets of authorizations are used
as standard test suites. However, there is no certainty regarding the quality of the authorizations
that are used, i.e., their ability to find defects in the new system.

Thus, the objectives for improving the testing process are twofold: select a relevant subset of
authorizations, i.e., reduce a daily traffic of authorizations to a smaller subset, and evaluate
the quality of a authorization set. The first objective allows CETREL saving time from the
testing process while the second one gives confidence in the test suites used. The following section
describes the approach that was proposed to overcome these issues.

12.2 Approach

In a daily traffic, most of the authorizations are actually redundant. For instance, a scenario such
as “a withdrawal of 20$ from an automated teller machine with sufficient money on the account”
doesn’t need to be tested multiple times. Thus, there is a degree of variability within a daily traffic
of authorizations.

The idea we proposed is to consider authorizations as a product line. Thus, by modeling the variability
of all the authorizations with a FM, authorizations represent configurations of this FM. It also enables
the application of generation and evaluation, as described in Part II and Part III of this dissertation.
The overview of the approach is depicted by Figure 12.2.

Tool and model

Reduced 
authorization set

Prioritized 
authorization set

Generated 
authorization set

Evaluation and 
statistics

Daily traffic
of

authorizations

Authorization set 
(daily traffic, test set)

1.

2.

3.4.

Figure 12.2: Approach proposed for improving the testing process prior testing. Using an authorization set
as input and using the feature model representing the variability among the authorizations, our tool can a)
reduce the authorizations by removing those that are redundant, prioritize the authorizations, generate new
ones and evaluate them.
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12.2.1 Modeling authorizations as a product line

Authorizations are messages which are structured by a header and parameters, as depicted in Figure
12.3. There are different types of headers, which are common to all authorizations. The bitmap fields
indicates which parameters are set. The remainder fields correspond to the parameter. For instance,
consider the following fragment of authorizationi from a VISA credit card:

Message Type : VISR Emission date : Sat Jun 28 00:05:02 2014 length : 224
Format header : 01

Format text : 02
Message length : 00E0

Station Destination : 886103
Station Source : 583011

Round trip control : 04
BASE 1 flags : 0000

Message status flags : 060000
Batch number : 00
Reserve VISA : 00000B

User info : 02
Message Type ID : 0100

Bitmap : F664648108F0A0160000000000000004
P2 PAN : 4011887690553911

P3 Processing Code : 000000
P4 Amount, Transaction : 000000006526

P6 Amount, Cardholder Billing : 000000006526
P7.1 Transmission Date : 0627
P7.2 Transmission Time : 230503

...

It represents some of the parameters and their corresponding values. From such authorization
messages, protocol specifications from the international card issuers such as Visa and Mastercard and
experts advice from CETREL, we built a FM representing all the possible authorizations. The different
authorization parameters represent the feature of this model. The resulting model encompasses more
than 100 different parameters and about 150 constraints among them. Building such a model allows
to apply the presented generation and evaluation techniques.

12.2.2 Application of configuration generation and evaluation approaches

Given the FM, we are able to:
iSome fields have voluntarily been hidden or change for preserving the confidentiality of the transaction.

Figure 12.3: Structure of an authorization message. A header field is common to all the authorizations.
The bitmaps field indicate which parameters are used. The remaining fields are numbered and correspond to
the parameters of a credit card authorization, such as the amount of the transaction.
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• Reduce the size of an authorization set. For instance, we can apply interaction coverage, e.g.,
2-wise, to keep only authorizations covering interaction between two parameters.

• Prioritize the authorizations. We can apply prioritization techniques such as those presented in
Chapter 4. For instance, dissimilar authorizations can be tested first.

• Generate authorizations. Thanks to the FM, we can calculate all the possible authorizations.
Thus, we can generate missing authorizations or parameters that are not covered in a given set
using techniques presented in Part II

• Evaluate authorizations. For instance, we can assess the quality of authorizations by evaluating
their t-wise coverage or the mutation score, as performed in Part III.

12.3 Preliminary results and future investigations

The collaboration with CETREL is an ongoing work that already led to interesting outcomes. This
sections introduces current results and future investigations.

(a) Original set of authorizations (b) Set covering all the 2-wise interactions

(c) Prioritization of the reduced set

Figure 12.4: Reduction and prioritization of 35,000 authorizations with 2-wise interaction coverage. A set
of 35,000 authorizations is reduced to 180 while keeping the same pairwise coverage. Prioritizing these 180
authorizations allows reaching a pairwise coverage greater than 95% with only 10 of them while a random
approach needs more than 40 authorizations to reach the same level of coverage.
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Chapter 12. Testing card authorization systems with CETREL: a real-world case study

12.3.1 Current results

Reduction and prioritization. We applied a 2-wise generation approach as well as a similarity
prioritization on a set of 35,000 Authorizations. It allows to reduce to from 35,000 to 180 authorization
by keeping the same 2-wise coverage. Regarding the prioritization, the random approach needs more
than 4 times the number of authorizations necessary to reach 95% of 2-wise coverage.

Evaluation of the existing test set. CETREL is recurrently using an authorization set of 4,806
authorizations. By analyzing this test set, we found that it covers only 19.67% of the authorization
variability. In addition, only a subset of about 40 parameters are used out of 120 possible. It means
that the domain covered by this authorization set is only 1/5 of the full authorization domain.

12.3.2 Work in progress and perspectives

Refining the variability model. With the previous results, we found that the test sets used by
CETREL always use the same parameters. These parameters are characterized as the most important
ones by the experts in CETREL. It means that FM is the theoretical one, which models all the
possible authorizations from the protocols specifications, but it does not represent the actual model
which is used for testing. We can refine this model by either removing the lest important parameters,
putting attributes such as importance to the FM or build a FM using traffic in real time using the
reverse-engineering techniques as presented in Part V or machine learning techniques. Such a model
will also encompass variability on the values of the different parameters.

Merging daily traffics. The idea behind merging daily traffics is to reach an ultimate authorizations
set which will contain all the possible scenarios that will exercise all the parts of the card authorization
system. Figure 12.5 depicts an example of what is expected. The redundancy among each day
of traffic of Figure 12.5a is removed. The traffics are merged into a big authorization set (Figure
12.5b).

(a) Current testing approach (b) Merged days of traffic

Figure 12.5: Merging daily traffic of authorizations to optimize the testing process. Several sets of
authorizations are merged to form a unique set without redundancy.
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12.4. Conclusions

Feedback and improvements. This project is still ongoing and requires the constant feedback from
the experts of CETREL. In particular, the experts are currently running some authorizations sets that
we generated in order to evaluate their ability to find actual defects in the new card authorization
systems. Thanks to this constant cooperation, we can adjust the different metrics we propose and
focus and specific points they want to address. The method and tools we used are generic and can be
extended to add other metrics and strategies.

Benefits for CETREL. The current tool we develop is very fruitful for CETREL. It already allows
to prioritize, generate, reduce and evaluate traffic of authorizations. In addition, the tool bridges
the different format of authorizations, which was something non-existing for CETREL. Indeed, a
daily traffic of authorization is a network message, but what is actually used for testing are XML
test cases. There is also a third format for storing authorization into a database. They are now able
to convert from one format to the two others, linking the real-world traffic of authorization to the
functional testing environment. The current main benefit for CETREL is to be able to evaluate the
quality of a daily traffic of authorizations in terms of variability.

12.4 Conclusions

In this chapter, we presented a concrete application of the techniques presented in this dissertation.
In a context of credit card authorization which is not a priori related to SPLs, we enabled the way to
improve the testing process by modeling the variability of authorizations, thus seeing them as a SPL,
and then applying the introduced methods. The project is still ongoing and more results are expected
in the following months, but the current outcomes are promising, with an optimization of the test
suites used. In particular, the main current outcome for CETREL is to be able to evaluate the quality
of daily traffics in terms of variability. Indeed, the variability of a given set of authorizations can be
evaluated against the global variability (given by the FM), showing the percentage of coverage for
these authorizations.

157





13
Conclusions and outlook

This chapter concludes the dissertation and presents future research directions.

Contents
13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
13.2 Future work and open research questions . . . . . . . . . . . . . . . . . . . . 160

13.2.1 Search-based techniques applied to software product lines . . . . . . . . . . . . 160
13.2.2 Combinatorial interaction testing in practice . . . . . . . . . . . . . . . . . . . 161



Chapter 13. Conclusions and outlook

This chapter is organized as follows. Section 13.1 summarizes the contributions of this dissertation
before Section 13.2 discusses potential directions for future work.

13.1 Summary

In this work, we presented techniques for enabling testing of SPLs based on FMs using SB approaches
combined with constraint solvers.

In the mono-objective configuration generation part, we have introduced a scalable technique based
on a similarity heuristic for generating configurations with respect to combinatorial testing. By
providing a partial but scalable t-wise approach, the proposed approach outperforms the state of
the art tools and allow to scale to large SPLs encompassing more than 6,000 features and with high
interaction strengths (t ≥ 6). We then introduced the first mutation-based approach for generating
configurations.

In the third part, we have extended the configuration approaches to support multiple testing
objectives. The first chapter of this part introduced a significant improvement over the state of the art
to support multiple objectives targeting a single configuration. The following chapter has introduced
an improvement to the multi-objective generation technique by supporting objectives target a whole
configuration suite. Both these techniques have been evaluated on a large set of SPLs and proven to
be effective.

The fourth part was focusing and the evaluation of a given configuration suite. We have first
introduced a mutation based approach and linked the mutation criterion to the similarity heuristic
introduced in Chapter 4. The following chapter has evaluated the correlation of the mutation criterion
with fault detection, demonstrating its ability to be an alternative to CIT.

In the fifth part, the first chapter has introduced an approach for reverse-engineering a SPL and its
FM from the source code of SPVs. It is the first fully automated and language-independent technique.
Chapter 11 has introduced a search-based technique for automatically evaluating whether reverse-
engineered FMs were reflecting the system they model, and when it is not the case, automatically fix
them. The approach has been evaluated on Linux and proved its ability to fix actual errors in the
constraints of the FM.

Finally, the previous chapter has introduced an industrial application of the proposed configuration
and evaluation techniques to the CETREL company. By modeling credit card authorizations as a
SPL FM, we enabled the use of the introduced methods, thus reducing the testing effort as long as
increasing the level of confidence in the test test suites used by the experts.

13.2 Future work and open research questions

This section describes potential future research directions.

13.2.1 Search-based techniques applied to software product lines

Improving the search process. Future work will investigate alternative ways to improve the search
process. Specifically, practices like parameter tuning [AF13], supervised search [JCHP13] or hybrid
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13.2. Future work and open research questions

approaches involving both constraint-driven and genetic search will be considered. The objectives are
to (1) investigate the effects of the parameters on the effectiveness and efficiency of the proposed
approach, (2) Find criteria for deciding when to stop the evolution process.

Search-based approaches for SPLs as a service. In this dissertation, we proposed several approaches
based on search-based techniques. Although we made the implementations publicly available in most
of the cases, it is not that easy for the community or industrial to reuse them. In this context, we
plan to include them in framework or application programming interface where the user could set his
own fitness functions and testing objectives and select different techniques to apply. This framework
will also allow to compare different search techniques for a specific problem.

Beyond Boolean FMs. One limitation of the work presented in this dissertation is that it relies of
FMs. These models are Boolean and thus cannot encompass complex and non-Boolean constraints.
In future work, we plan to work with SMT solvers in order to handle other type of constraints. In
particular, we will analyze whether flattening non-Boolean models to Boolean ones as an impact of
the solving process.

13.2.2 Combinatorial interaction testing in practice

CIT in the cloud. Recently, the zcov platform has been released, proposing combinatorial testing
for SPLs as a service using the cloud of Amazon and parallel computing. The first performances
results are promising, managing to generate the 3-wise interactions for Linux in less than 8 hours,
according to the last report i. It could be interesting to design or adapt our search-based techniques
for these architecture and compare them with CIT techniques.

Interaction faults in practice. There are too few approaches which evaluate the interaction faults
in practice. One limitation of the proposed approaches is that they do not evaluate whether they can
in practice find interaction faults. Thus, there is no need to evaluate the proposed approaches in
practice, and also to compare with other techniques.

A repository with SPL including interaction faults To support the previous future work, we aim
at providing a SPL repository containing code of SPLs with actual interaction faults. It requires the
manual of interactions faults or the collect of existing ones. Such a repository will be useful to the
community for applying their approaches or comparing them with other techniques.

ihttp://zcov.net/2015/01/15/beta-3-wise-performance/
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