
PLEDGE: A Product Line Editor and Test Generation Tool

Christopher Henard
SnT, University of Luxembourg

Luxembourg, Luxembourg
christopher.henard@uni.lu

Mike Papadakis
SnT, University of Luxembourg

Luxembourg, Luxembourg
michail.papadakis@uni.lu

Gilles Perrouin
∗

PReCISE, University of Namur
Namur, Belgium

gilles.perrouin@fundp.ac.be
Jacques Klein

SnT, University of Luxembourg
Luxembourg, Luxembourg
jacques.klein@uni.lu

Yves Le Traon
SnT, University of Luxembourg

Luxembourg, Luxembourg
yves.letraon@uni.lu

ABSTRACT
Specific requirements of clients lead to the development of
variants of the same software. These variants form a Soft-
ware Product Line (SPL). Ideally, testing a SPL involves
testing all the software products that can be configured
through the combination of features. This, however, is in-
tractable in practice since a) large SPLs can lead to millions
of possible software variants and b) the testing process is
usually limited by budget and time constraints. To over-
come this problem, this paper introduces PLEDGE, an open
source tool that selects and prioritizes the product config-
urations maximizing the feature interactions covered. The
uniqueness of PLEDGE is that it bypasses the computation
of the feature interactions, allowing to scale to large SPLs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Design, Experimentation

Keywords
Software Product Lines, Combinatorial Interaction Testing,
Scalability, Search-based Approaches, Prioritization, T-wise

1. INTRODUCTION
Specific needs of particular clients lead to the develop-

ment of several variants of the same software. These vari-
ants, which share a common set of features while having
distinct functionalities form a Software Product Line (SPL).
SPLs rely on variability modeling which uses Feature Mod-
els (FMs) as the standard and compact representation [8] of

∗FNRS Postdoctoral Researcher.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC 2013 workshops, August 26 - 30 2013, Tokyo, Japan
Copyright 2013 ACM 978-1-4503-2325-3/13/08 ...$15.00.

all the possible products of a SPL. By representing the com-
bination of features and expressing constraints, FMs allow
configuring tailored software products.

Testing a SPL can lead to millions of possible variants to
test, (it can be shown that 270 independent and optional
features can cover more products that there are atoms in
the universe). It results in a situation which is inconceiv-
able in an industrial context subjected to time and budget
constraints. As a consequence, it is necessary to reduce that
testing effort by selecting the relevant variants to test.

Combinatorial Interaction Testing [2, 10] (CIT) focuses
on the interactions between t features (t-wise). It has been
identified as a relevant approach to reduce the number of
products for SPLs [4, 7, 13]. However, existing applications
of CIT rely on the expensive computation of all the t-wise in-
teractions, while considering the FM constraints. Although
relying on efficient satisfiability (SAT) solvers, this problem
is known to be NP-complete in the general case [7], limiting
existing approaches to small features interactions, e.g., t = 2
or t = 3 for large SPLs.

This paper introduces PLEDGE, an open source Java tool
that selects and prioritizes product configurations maximiz-
ing the number of t-wise interactions covered. The novelty
of the tool is that it does not require to compute any feature
interaction, thus allowing to scale to large SPLs and to any
value of t [3]. It also allows specifying the desired number
of product configurations to test.

The remainder of this paper is organized as follows. Sec-
tion 2 present the research challenges underlying PLEDGE.
Section 3 describes the approaches implemented by the tool
and presents its features and architecture before giving a
discussion. Finally, Section 4 concludes the paper.

2. RESEARCH CHALLENGES
The first research challenge is the combinatorial explosion

of the number of products to consider. For instance, the FM
of a video player [12] allows configuring more than 4.5×1013

different variants of this player. In that context, how to test
the SPL? Testing all the possible products is intractable,
leading to the necessity to reduce the number of products
to test to a reasonable value while trying to maximize the
level of confidence in the products that are tested.

The second challenge is the scalability. Existing tech-
niques like [6, 7] are constraint-based, which makes the prob-
lem difficult to handle for large FMs, i.e., heavily-constrained
FMs with more than 1,000 features. They also depend on

the value of t and are thus limited to small feature interac-
tions. The tool presented in this paper aims at providing
solutions using heuristic instead of constraints and does not
depend on the value of t, allowing to scale to large SPLs.

The last challenge concerns the order in which the prod-
ucts should be tested. Suppose we know the software prod-
ucts that have to be tested, e.g., the products that will be
sold. If the testing budget allows testing only some of these
products, which products should be tested first? What are
the most important products?

3. THE PLEDGE TOOL
PLEDGE - a Product Line EDitor and tests GEneration

tool is an open source1 Java application of around 4,000 lines
of code in its current version. It aims at solving the above-
mentioned challenges by both prioritizing and generating the
product configurations to test.

3.1 Approach To Products Prioritization and
Generation

PLEDGE implements approaches [3] that make use of a
similarity heuristic (see Section 3.1.2) to both generate and
prioritize product configurations derived from a FM of a
SPL with respect to t-wise testing. The advantage of the
heuristic is that it avoids computing any t-wise interaction.

3.1.1 T-wise Testing
T-wise testing focuses on the interactions between t fea-

tures. At the FM level, we consider all the possible inter-
actions between the features. Indeed, the FM describes the
dependencies between all the features of the SPL, thus mod-
eling all the possible variants that can be configured. It thus
allows combining any t features together in a product vari-
ant.

With reference to the FM of Figure 1, a 2-wise combi-
nation of features is for instance (Calls,GPS). The ab-
sence of a feature is also considered in a feature interaction.
Thus, another example of such a 2-wise interaction might
be (Calls,¬GPS). The t-wise interactions of a FM repre-
sents all the interactions between t features that are valid
(i.e., which fulfill the constraints of the FM). For instance,
the 3-wise interaction (Calls,GPS,Basic) is invalid since
the GPS feature excludes the Basic one. The validity of a
given combination can be checked with a SAT solver.

A product configuration, i.e., a test case is a configuration
of the FM. It can be seen as a list of selected and unselected
features. The selected features are supported by the software
variant while the unselected features are not. To simplify,
we will refer to product configurations as products.

Considering the t-combinations between selected and un-
selected features of a product, it is possible to know the in-
teractions covered by this specific product. By knowing the
t-wise interactions covered by products, i.e., the test suite, it
is possible to evaluate the t-wise coverage of these products
with respect to all the valid t-wise interactions of the FM.
For instance, the following product P is a valid configura-
tion of the FM and corresponds to a test that is selected or
prioritized by the tool. Selected features are preceded with
+ while unselected ones are preceded with the − symbol.

P = {+Mobile Phone,+Calls,−GPS,+Screen,+Basic,
−Colour,−High Resolution,−Media,−Camera,−MP3}.

1https://github.com/christopherhenard/pledge.

Figure 1: A simple feature model of a mobile phone
product line [1], representing the features and their
dependencies.

3.1.2 T-wise Products’ Generation and Prioritization
The objective of the products’ generation is to maximize

the amount of t-wise combinations covered by the selected
products. The prioritization aims at ordering products ac-
cording to their ability to cover t-wise interactions.

Computing the t-wise combinations of features is compu-
tationally expensive. To overcome this problem, the prior-
itization and generation techniques [3] implemented by the
tool bypass this problem. To this end, they consider prod-
ucts represented as a set of selected and unselected features.
Based on this representation, a distance measure between
two products has been introduced and serves as a similarity
heuristic to compare the products. Experimental results [3]
demonstrated the benefit of the similarity heuristic to mimic
t-wise coverage.

To generate the products to test, the similarity heuris-
tic was introduced as a fitness function to evaluate a set
of products and to guide a search process. To this end, a
SAT solver [11] was used to generate valid configurations
of the FM forming the search space. Then, a search-based
approach guided by the fitness function performed the selec-
tion of the products to test, replacing the worst product in
terms of fitness by another product from the search space.
The approach is executed during a user-specified amount of
time and return the user-specified number of products re-
quired to test, which are prioritized on the fly. To prioritize
a given set of products, two approaches called Greedy and
Near Optimal were proposed [3]. They make use of the dis-
tance between the products to order them.

An experimental study conducted on 124 FMs from 11
features to ≈ 7,000 features demonstrated the benefit and
scalability of these approaches [3]. For instance, Table 1
presents the t-wise coverage for t = 2, ..., 6 reached with 50
and 100 products generated for the Linux Kernel 2.6.28.6
FM (6,888 features) in 30 minutes on 10 independent exe-
cutions. Regarding the prioritization, Figure 2 depicts the
t-wise coverage difference between our approach and a ran-
dom one on a set of 500 products, averaged on the 124 FMs
studied on 10 independent executions. For instance, 14% of
difference is observed with 100 products for t = 6.

In addition, the conducted experiments demonstrated that
the test generation approach competes with existing t-wise
tools, e.g., [6, 7] that are generally limited to small values
of t (i.e., t = 2 or t = 3) while allowing to mimic t-wise for
greater value of t. The proposed approaches are designed
to handle large scale SPLs since they do not compute any

https://github.com/christopherhenard/pledge

Table 1: T-wise coverage (%) achieved for the Linux
Kernel 2.6.28.6 feature model (6,888 features) with
50 and 100 products generated in 30 minutes for 10
independent executions.

50 products 100 products

2-wise 96.92% 97.71%

3-wise 91.96% 94.60%

4-wise 81.37% 88.53%

5-wise 64.42% 77.38%

6-wise 45.24% 61.13%

combination of features and do not depend on the value of
t. Further experimental results are available in [3].

3.2 Functionalities and Usage
The current version of PLEDGE allows performing the

following actions:

• Loading a FM from a file. PLEDGE supports the
SPLOT [12] and DIMACS (Conjunctive Normal Form)
formats,

• Visualizing the FM information, for instance, its con-
straints and features,

• Editing the FM, by adding or removing constraints,

• Generating the products to test from the FM, by spec-
ifying the number of products desired and the time
allowed for generating them,

• Loading a list of products and prioritize them accord-
ing to one of the two prioritization techniques pro-
posed,

• Saving the generated or prioritized products to a file.

The tool can be used with both a command line and
graphical user interface (GUI). Figure 3 show the GUI of
PLEDGE. The command line interface eases the use of the
tool in a scripting or automated context while the GUI is
more user-friendly. In terms of usage, an HTML user guide is
embedded in the application to help the user using the tool.
In terms of development, the source code and the Javadoc
documentation are available. Since the tool is open source,
it can be used as a library as well.

Figure 2: T-wise coverage difference with a random
prioritization for 10 independent executions. The
results are averaged on 124 feature models.

Figure 3: PLEDGE’s graphical user interface.

3.3 Architecture
PLEDGE is built upon the Model-View-Controller (MVC)

architecture [9]. This architecture allows separating the
internal logic (the model) from the graphical representa-
tion (the view) and the user’s interaction with it (the con-
troller(s)). Concretely, the model is observed by the view,
which graphically represents the model. When the user per-
forms an action on the GUI, a controller acts on the model
to change its internal representation which triggers the view
to be refreshed. The main advantage of this architecture
is the separation of concerns and the code reusability. The
tool also makes use of common design patterns [14], like the
strategy pattern to implement the products’ prioritization
and generation techniques, the adapter pattern to map the
model of complex graphical component to the tool’s model
or the observer pattern to implement the MVC architecture.

The architecture of the products’ prioritizer and generator
units are presented in Figure 4. The products prioritizer (see
Figure 4(a)) takes as input the list of products to prioritize
and the prioritization technique to use. The prioritization
technique is specified using the strategy design pattern. The
prioritization unit is using the similarity distances computed
on the products and the ordering technique to output the
prioritized list of products.

The products’ generator (see Figure 4(b)) takes as input
the FM, the generation technique, the number of products
to test and the time allowed for generating them. Internally,
it uses a SAT solver to handle the FM constraints and to get
valid products. The algorithm, specified by the generation
technique via the strategy design pattern uses the allowed
amount of time to generate the number of products specified.

Similarity

Distances
Algorithm

Products
Prioritization

technique

Prioritized products

Compute

Order

(a) Prioritizer

SAT

Solver

Algorithm

Products
Generation

technique

Generated & prioritized products

Load

Products

Prioritizer

Products

Number of

products

Allowed

generation

time

(b) Generator

Figure 4: PLEDGE’s architecture.

3.4 Discussion
The products’ generation technique implemented by the

tool requires the number of products to generate and the
amount of time allowed to generate them to be manually
specified by the user. These parameters aims at making
the testing process flexible. Indeed, other approaches, e.g.,
[7] generate all the products required to achieve 100% of
coverage of the t-wise interactions. The inconvenience of
these approaches is that they may take a large amount of
time to perform this full coverage and they may generate too
many products. To the authors’ knowledge, the approach
implemented by PLEDGE is a unique feature which aims at
maximizing the t-wise coverage for the specified amount of
products, using the specified amount of time. It thus gives
a partial coverage but also makes the testing process more
tractable with large SPLs. In addition, the prioritization of
a given list of products is a unique feature of the tool.

Both the products’ generation and prioritization meth-
ods scale to large FMs. While using constraints solver, we
understood that solving constraints takes time and is an ob-
stacle to scalability. We also found out that computing the
t-wise coverage of products is not tractable for large FMs
since all the t-wise combination of the products have to be
considered. The products’ generation approach makes use
of a SAT solver only for generating valid products. Instead
of using constraints, the proposed approaches are driven by
a similarity heuristic. The benefit of this heuristic is that
it mimics t-wise coverage and does not require to compute
any combination of feature. It also does not depend on t.
We show in [3], Section V.A the benefit of the heuristic in
terms of computation.

Finally, while using a SAT solver to generate valid prod-
ucts, we found out that the generated products were pre-
dictable due to the fact that the constraints and the literal
of the clauses are assigned values in a particular way. It
means that one can guess the products that will be returned
by the solver since it always assign values to the variable in
same order. To overcome this problem, we randomized the
way the solver assign values to its internal variables in order
to get products from all the valid products’ space.

4. CONCLUSION AND FUTURE WORK
We presented PLEDGE, a publicly available tool that al-

lows generating and prioritizing product configurations of a
SPL. It solves the challenge of testing a SPL in the con-
text of Combinatorial Interaction Testing by selecting the
products which maximize the t-wise interactions between
features. By drastically reducing the number of products
to test and ordering them while avoiding the combinatorial
explosion induced by the computation of the t-wise interac-
tions, it provides both a great level of flexibility and usability
in a real and industrial testing process. This approach can
also help generating products for model-based testing [5].

The current version of PLEDGE is the first release. The
tool will be extended with additional features, including:

• The ability to draw a feature diagram and generating
its boolean formula,

• The implementation of other prioritization and gener-
ation techniques via a plug-in system,

• The implementation of t-wise coverage computation
and results visualizer,

• Integration as an Eclipse plug-in,

• Support of additional feature models format.

Finally, we invite researchers, developers and students to use
our tool and/or to contribute to its development:

http://research.henard.net/SPL/PLEDGE/.

5. REFERENCES
[1] D. Benavides, S. Segura, and A. Ruiz-Cortés.

Automated analysis of feature models 20 years later:
A literature review. Inf. Syst., 35(6):615–636, Sept.
2010.

[2] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG System: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997.

[3] C. Henard, M. Papadakis, G. Perrouin, J. Klein,
P. Heymans, and Y. L. Traon. Bypassing the
combinatorial explosion: Using similarity to generate
and prioritize t-wise test suites for large software
product lines. CoRR, abs/1211.5451, 2012.

[4] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. Le Traon. Assessing software product line testing
via model-based mutation: An application to
similarity testing. In ICSTW, A-MOST, 2013.

[5] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Towards automated testing and fixing of
re-engineered feature models. In ICSE, pages
1245–1248, 2013.

[6] A. Hervieu, B. Baudry, and A. Gotlieb. Pacogen:
Automatic generation of pairwise test configurations
from feature models. In ISSRE, pages 120–129, 2011.

[7] M. F. Johansen, Ø. Haugen, and F. Fleurey.
Properties of realistic feature models make
combinatorial testing of product lines feasible. In
MODELS, pages 638–652, 2011.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report,
Carnegie-Mellon University Software Engineering
Institute, Nov. 1990.

[9] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view controller user interface paradigm in
smalltalk-80. J. Object Oriented Program., 1(3):26–49,
Aug. 1988.

[10] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr.
Software fault interactions and implications for
software testing. IEEE Trans. Softw. Eng.,
30(6):418–421, June 2004.

[11] D. Le Berre and A. Parrain. The sat4j library, release
2.2, system description. Journal on Satisfiability,
Boolean Modeling and Computation(JSAT), 7:59–64,
2010.

[12] M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t.:
software product lines online tools, 2009.

[13] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and
Y. Le Traon. Pairwise testing for software product
lines: A comparison of two approaches. Softw. Qual.
Journal, 2011.

[14] L. Rising. The patterns handbook: Techniques,
strategies, and applications. 1998.

http://research.henard.net/SPL/PLEDGE/

	Introduction
	Research Challenges
	The PLEDGE Tool
	Approach To Products Prioritization and Generation
	T-wise Testing
	T-wise Products' Generation and Prioritization

	Functionalities and Usage
	Architecture
	Discussion

	Conclusion and Future Work
	References

